Qing Wang , Ke Shao , Zhibo Cai , Yingpu Che , Haochong Chen , Shunfu Xiao , Ruili Wang , Yaling Liu , Baoguo Li , Yuntao Ma
{"title":"Prediction of sugar beet yield and quality parameters using Stacked-LSTM model with pre-harvest UAV time series data and meteorological factors","authors":"Qing Wang , Ke Shao , Zhibo Cai , Yingpu Che , Haochong Chen , Shunfu Xiao , Ruili Wang , Yaling Liu , Baoguo Li , Yuntao Ma","doi":"10.1016/j.aiia.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate pre-harvest prediction of sugar beet yield is vital for effective agricultural management and decision-making. However, traditional methods are constrained by reliance on empirical knowledge, time-consuming processes, resource intensiveness, and spatial-temporal variability in prediction accuracy. This study presented a plot-level approach that leverages UAV technology and recurrent neural networks to provide field yield predictions within the same growing season, addressing a significant gap in previous research that often focuses on regional scale predictions relied on multi-year history datasets. End-of-season yield and quality parameters were forecasted using UAV-derived time series data and meteorological factors collected at three critical growth stages, providing a timely and practical tool for farm management. Two years of data covering 185 sugar beet varieties were used to train a developed stacked Long Short-Term Memory (LSTM) model, which was compared with traditional machine learning approaches. Incorporating fresh weight estimates of aboveground and root biomass as predictive factors significantly enhanced prediction accuracy. Optimal performance in prediction was observed when utilizing data from all three growth periods, with <em>R</em><sup>2</sup> values of 0.761 (rRMSE = 7.1 %) for sugar content, 0.531 (rRMSE = 22.5 %) for root yield, and 0.478 (rRMSE = 23.4 %) for sugar yield. Furthermore, combining data from the first two growth periods shows promising results for making the predictions earlier. Key predictive features identified through the Permutation Importance (PIMP) method provided insights into the main factors influencing yield. These findings underscore the potential of using UAV time-series data and recurrent neural networks for accurate pre-harvest yield prediction at the field scale, supporting timely and precise agricultural decisions.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 252-265"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate pre-harvest prediction of sugar beet yield is vital for effective agricultural management and decision-making. However, traditional methods are constrained by reliance on empirical knowledge, time-consuming processes, resource intensiveness, and spatial-temporal variability in prediction accuracy. This study presented a plot-level approach that leverages UAV technology and recurrent neural networks to provide field yield predictions within the same growing season, addressing a significant gap in previous research that often focuses on regional scale predictions relied on multi-year history datasets. End-of-season yield and quality parameters were forecasted using UAV-derived time series data and meteorological factors collected at three critical growth stages, providing a timely and practical tool for farm management. Two years of data covering 185 sugar beet varieties were used to train a developed stacked Long Short-Term Memory (LSTM) model, which was compared with traditional machine learning approaches. Incorporating fresh weight estimates of aboveground and root biomass as predictive factors significantly enhanced prediction accuracy. Optimal performance in prediction was observed when utilizing data from all three growth periods, with R2 values of 0.761 (rRMSE = 7.1 %) for sugar content, 0.531 (rRMSE = 22.5 %) for root yield, and 0.478 (rRMSE = 23.4 %) for sugar yield. Furthermore, combining data from the first two growth periods shows promising results for making the predictions earlier. Key predictive features identified through the Permutation Importance (PIMP) method provided insights into the main factors influencing yield. These findings underscore the potential of using UAV time-series data and recurrent neural networks for accurate pre-harvest yield prediction at the field scale, supporting timely and precise agricultural decisions.