{"title":"Revisiting nonlinear impedance in acoustic liners","authors":"Rémi Roncen","doi":"10.1016/j.jsv.2025.119058","DOIUrl":null,"url":null,"abstract":"<div><div>Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under varying sound pressure levels. This study investigates the impact of complex source excitations on the nonlinear impedance of aeroacoustic liners. Using both experiments and the Impulse Response Time-Domain Impedance Boundary Condition (IR-TDIBC) model, the paper explores how varying spectral content, including multitone excitations with different phase configurations, influences the impedance characteristics of liners. Experimental results are compared with theoretical predictions, revealing strong alignment and highlighting the significant role of excitation phase and amplitude in shaping the impedance response. It is the time-domain instantaneous particle velocity at the liner interface that proves to be the primary determinant of the nonlinear response, and the sole input required by the IR-TDIBC.</div><div>Additionally, the influence of the shear grazing flow noise on the impedance is examined by superimposing a single-tone excitation on background flow noise at different Mach numbers. Flow-induced noise is found to increase resistance and decrease reactance, as observed in duct experiments, accounting for some of the changes in impedance under shear grazing flow conditions. These findings underscore the importance of considering both complex source excitations and flow-induced noise when modeling the impedance of aeroacoustic liners, with implications for improving the accuracy of impedance predictions in practical aeroacoustic applications.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"608 ","pages":"Article 119058"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25001324","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under varying sound pressure levels. This study investigates the impact of complex source excitations on the nonlinear impedance of aeroacoustic liners. Using both experiments and the Impulse Response Time-Domain Impedance Boundary Condition (IR-TDIBC) model, the paper explores how varying spectral content, including multitone excitations with different phase configurations, influences the impedance characteristics of liners. Experimental results are compared with theoretical predictions, revealing strong alignment and highlighting the significant role of excitation phase and amplitude in shaping the impedance response. It is the time-domain instantaneous particle velocity at the liner interface that proves to be the primary determinant of the nonlinear response, and the sole input required by the IR-TDIBC.
Additionally, the influence of the shear grazing flow noise on the impedance is examined by superimposing a single-tone excitation on background flow noise at different Mach numbers. Flow-induced noise is found to increase resistance and decrease reactance, as observed in duct experiments, accounting for some of the changes in impedance under shear grazing flow conditions. These findings underscore the importance of considering both complex source excitations and flow-induced noise when modeling the impedance of aeroacoustic liners, with implications for improving the accuracy of impedance predictions in practical aeroacoustic applications.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.