{"title":"Energy and entropy conserving compatible finite elements with upwinding for the thermal shallow water equations","authors":"Tamara A. Tambyah , David Lee , Santiago Badia","doi":"10.1016/j.jcp.2025.113937","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we develop a new compatible finite element formulation of the thermal shallow water equations that conserves energy and mathematical entropies given by buoyancy–related quadratic tracer variances. Our approach relies on restating the governing equations to enable discontinuous approximations of thermodynamic variables and a variational continuous time integration. A key novelty is the inclusion of centred and upwinded fluxes. The proposed semi-discrete system conserves discrete entropy for centred fluxes, monotonically damps entropy for upwinded fluxes, and conserves energy. The fully discrete scheme preserves entropy conservation at the continuous level. The ability of a new linearised Jacobian, which accounts for both centred and upwinded fluxes, to capture large variations in buoyancy and simulate thermally unstable flows for long periods of time is demonstrated for two different transient case studies. The first involves a thermogeostrophic instability where including upwinded fluxes is shown to suppress spurious oscillations while successfully conserving energy and monotonically damping entropy. The second is a double vortex where a constrained fully discrete formulation is shown to achieve exact entropy conservation in time.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"531 ","pages":"Article 113937"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002207","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we develop a new compatible finite element formulation of the thermal shallow water equations that conserves energy and mathematical entropies given by buoyancy–related quadratic tracer variances. Our approach relies on restating the governing equations to enable discontinuous approximations of thermodynamic variables and a variational continuous time integration. A key novelty is the inclusion of centred and upwinded fluxes. The proposed semi-discrete system conserves discrete entropy for centred fluxes, monotonically damps entropy for upwinded fluxes, and conserves energy. The fully discrete scheme preserves entropy conservation at the continuous level. The ability of a new linearised Jacobian, which accounts for both centred and upwinded fluxes, to capture large variations in buoyancy and simulate thermally unstable flows for long periods of time is demonstrated for two different transient case studies. The first involves a thermogeostrophic instability where including upwinded fluxes is shown to suppress spurious oscillations while successfully conserving energy and monotonically damping entropy. The second is a double vortex where a constrained fully discrete formulation is shown to achieve exact entropy conservation in time.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.