Jian Zhang , Xiaoting Mo , Weiqiang Li , Cheng Cheng , Yu Feng , Yiwen Zhang , Shengbin Li
{"title":"Nanopore sequencing of MiniHap biomarkers for forensic DNA mixture deconvolution: A proof-of-principle study","authors":"Jian Zhang , Xiaoting Mo , Weiqiang Li , Cheng Cheng , Yu Feng , Yiwen Zhang , Shengbin Li","doi":"10.1016/j.fsigen.2025.103272","DOIUrl":null,"url":null,"abstract":"<div><div>Mixture deconvolution remains one of the major challenges in the field of forensic science. Currently, genetic markers are used and studied in the field of forensic genetics, including short tandem repeat (STR), insertion/deletion polymorphism (InDel), single nucleotide polymorphism (SNP), InDel closely linked to STR (DIP-STR), SNP closely linked to STR (SNP-STR), InDel closely linked to SNP (DIP-SNP) and microhaplotype (MH), all of which have been studied for DNA mixture analysis and have their own advantages and disadvantages. Mini-haplotype (MiniHap), as a novel haplotype genetic marker, contains 5 or more SNPs. A previous study has substantiated its significant high polymorphic characteristics, and it is expected to have potential applications in individual identification, paternity testing, ancestry inference, and mixture deconvolution. In this study, we first screened 22 MiniHaps with high polymorphism potential and constructed a panel based on the QNome nanopore sequencing device. Subsequently, we tested 100 unrelated Chinese Han individuals to evaluate the sequencing performance, allele (haplotype) frequencies, effective number of alleles (A<sub>e</sub>) and forensic parameters of the 22 MiniHaps markers included in this novel assay. Next, a series of mixture simulations (two- or three-person mixtures with mixing ratios of 1:1–1:99 or 1:1:1–1:8:1) based on three standard materials (9947 A, 9948 and 2800 M) were detected by this MiniHap panel to explore its potential for DNA mixture deconvolution. The average A<sub>e</sub> value was 10.9574, and 52.38 % of MiniHap loci had A<sub>e</sub> values greater than 12.0000. The mean values of genetic diversity (GD) and power of discrimination (PD) were 0.8717 and 0.9457, respectively. Notably, most MiniHaps (85.71 %) had PD values exceeding 0.9000. The combined match probability (CMP) and combined power of exclusion (CPE) of this MiniHap panel were 4.4505 × 10<sup>−31</sup> and 0.999999999999999996653, respectively. Moreover, the results of mixture analysis demonstrated that this MiniHap panel allowed detecting the components of minor contributor (s) even in imbalanced mixture samples, with detection limits of 1:39 and 1:8:1 for two- and three-person mixtures, respectively. In summary, MiniHap markers have remarkable application potential in mixture deconvolution, and it is necessary to conduct in-depth research on MiniHap markers for mixture analysis in the future.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"78 ","pages":"Article 103272"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497325000523","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Mixture deconvolution remains one of the major challenges in the field of forensic science. Currently, genetic markers are used and studied in the field of forensic genetics, including short tandem repeat (STR), insertion/deletion polymorphism (InDel), single nucleotide polymorphism (SNP), InDel closely linked to STR (DIP-STR), SNP closely linked to STR (SNP-STR), InDel closely linked to SNP (DIP-SNP) and microhaplotype (MH), all of which have been studied for DNA mixture analysis and have their own advantages and disadvantages. Mini-haplotype (MiniHap), as a novel haplotype genetic marker, contains 5 or more SNPs. A previous study has substantiated its significant high polymorphic characteristics, and it is expected to have potential applications in individual identification, paternity testing, ancestry inference, and mixture deconvolution. In this study, we first screened 22 MiniHaps with high polymorphism potential and constructed a panel based on the QNome nanopore sequencing device. Subsequently, we tested 100 unrelated Chinese Han individuals to evaluate the sequencing performance, allele (haplotype) frequencies, effective number of alleles (Ae) and forensic parameters of the 22 MiniHaps markers included in this novel assay. Next, a series of mixture simulations (two- or three-person mixtures with mixing ratios of 1:1–1:99 or 1:1:1–1:8:1) based on three standard materials (9947 A, 9948 and 2800 M) were detected by this MiniHap panel to explore its potential for DNA mixture deconvolution. The average Ae value was 10.9574, and 52.38 % of MiniHap loci had Ae values greater than 12.0000. The mean values of genetic diversity (GD) and power of discrimination (PD) were 0.8717 and 0.9457, respectively. Notably, most MiniHaps (85.71 %) had PD values exceeding 0.9000. The combined match probability (CMP) and combined power of exclusion (CPE) of this MiniHap panel were 4.4505 × 10−31 and 0.999999999999999996653, respectively. Moreover, the results of mixture analysis demonstrated that this MiniHap panel allowed detecting the components of minor contributor (s) even in imbalanced mixture samples, with detection limits of 1:39 and 1:8:1 for two- and three-person mixtures, respectively. In summary, MiniHap markers have remarkable application potential in mixture deconvolution, and it is necessary to conduct in-depth research on MiniHap markers for mixture analysis in the future.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.