Combined toxicity evaluation of polystyrene nanoplastics and Nano-ZnO of distinctive morphology on human lung epithelial cells

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-03-19 DOI:10.1016/j.scitotenv.2025.179097
Henghui Li , Simin Tang , Xiaoyu Jia , Xinyi Zhu , Ling Cai , Mingxiu Duan , Shaozhuo Wang , Huijun Jiang , MingHui Ji , Shoulin Wang , Jin Chen
{"title":"Combined toxicity evaluation of polystyrene nanoplastics and Nano-ZnO of distinctive morphology on human lung epithelial cells","authors":"Henghui Li ,&nbsp;Simin Tang ,&nbsp;Xiaoyu Jia ,&nbsp;Xinyi Zhu ,&nbsp;Ling Cai ,&nbsp;Mingxiu Duan ,&nbsp;Shaozhuo Wang ,&nbsp;Huijun Jiang ,&nbsp;MingHui Ji ,&nbsp;Shoulin Wang ,&nbsp;Jin Chen","doi":"10.1016/j.scitotenv.2025.179097","DOIUrl":null,"url":null,"abstract":"<div><div>Despite increasing concerns on the co-exposure of nanoplastics (NPs) and heavy metals including zinc oxide nanoparticles (Nano-ZnO) in the public health, the systematic studies as well as available methodology of combined toxicity evaluation of Nano-ZnO/NPs are lacking. In this study, the single and combined toxicity of Nano-ZnO and polystyrene nanoplastics (PS-NPs) on human lung epithelial cells were evaluated by a combination of <em>in vitro</em> approach including real-time cell analysis (RTCA), cell counting kit-8 (CCK-8), oxidative stress, cell membrane integrity and apoptosis assay. RTCA was employed to dynamically monitor the effect of combined exposure of Nano-ZnO and PS-NPs on cell growth, in comparison with end-point CCK-8 assay. It was found that the cytotoxicity of different Nano-ZnO involved disintegration of cell membrane and causing oxidative stress and apoptosis while PS-NPs mainly induced oxidative stress and apoptosis. The proposed study not only pinpointed the distinctive interaction mode between Nano-ZnO and nanoplastics, but provided integrated approaches to environment and health risk assessment of co-exposed Nano-ZnO and nanoplastics.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"973 ","pages":"Article 179097"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725007326","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Despite increasing concerns on the co-exposure of nanoplastics (NPs) and heavy metals including zinc oxide nanoparticles (Nano-ZnO) in the public health, the systematic studies as well as available methodology of combined toxicity evaluation of Nano-ZnO/NPs are lacking. In this study, the single and combined toxicity of Nano-ZnO and polystyrene nanoplastics (PS-NPs) on human lung epithelial cells were evaluated by a combination of in vitro approach including real-time cell analysis (RTCA), cell counting kit-8 (CCK-8), oxidative stress, cell membrane integrity and apoptosis assay. RTCA was employed to dynamically monitor the effect of combined exposure of Nano-ZnO and PS-NPs on cell growth, in comparison with end-point CCK-8 assay. It was found that the cytotoxicity of different Nano-ZnO involved disintegration of cell membrane and causing oxidative stress and apoptosis while PS-NPs mainly induced oxidative stress and apoptosis. The proposed study not only pinpointed the distinctive interaction mode between Nano-ZnO and nanoplastics, but provided integrated approaches to environment and health risk assessment of co-exposed Nano-ZnO and nanoplastics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Climate land use and other drivers' impacts on island ecosystem services: A global review Contribution and simulation of multiple forcings on total nitrogen concentration in river-lake reservoir systems Spread of antimicrobial-resistant clones of the ESKAPEE group: From the clinical setting to hospital effluent Douglas fir – A victim of its high productivity in a warming climate? Predominantly negative growth trends in the North German Lowlands How does urban morphology impact cities air quality? A modelling study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1