I-Fei Cho , Chi-Chao Chao , Ta-Te Lin , Yuan Yang , Pei-Fang Tang
{"title":"Effects of posterior parietal cortex anodal transcranial direct current stimulation on ankle tracking visuomotor control in healthy young adults","authors":"I-Fei Cho , Chi-Chao Chao , Ta-Te Lin , Yuan Yang , Pei-Fang Tang","doi":"10.1016/j.humov.2025.103351","DOIUrl":null,"url":null,"abstract":"<div><div>Ankle motor control is crucial for balance maintenance and fall prevention. Neurocomputational models of motor control suggest that the posterior parietal cortex (PPC) plays a critical role in estimating body and environmental states, a process fundamental to motor control. Anodal transcranial direct current stimulation (atDCS) has been shown to modulate cortical excitability and alter behaviors accordingly. This study explored the impact of atDCS over the PPC on ankle tracking visuomotor control using a motor adaptation research paradigm in healthy young adults. Thirty-eight participants were randomly assigned to either an atDCS or sham control group. All participants completed an ankle tracking experiment divided into three phases: pre-adaptation, adaptation, and re-adaptation, with each phase comprising eight blocks of five trials. During the experiment, each participant wore a sensor on the non-dominant foot and performed continuous dorsiflexion and plantarflexion movements to track a target cursor on a screen. Visual feedback of the foot position was provided, with a 1:1 feedback ratio in the pre- and re-adaptation phases and a 2.5:1 ratio in the adaptation phase to promote visual-motor remapping. The atDCS group received 20 min of 2 mA atDCS over the PPC during the adaptation phase. Tracking performance on each trial was measured as the root mean squared error (RMSE) between the target and actual movement trajectories. Both groups showed similar RMSEs in the pre-adaptation phase (<em>p</em> > 0.05). However, in the adaptation phase, the atDCS group demonstrated a significant reduction from block 1 to block 2 (<em>p</em> = 0.001, <em>Cohen's d</em> = 0.86) and maintained this improved performance in the following blocks, while the sham group showed no significant changes throughout this phase (<em>p</em> > 0.05). In the re-adaptation phase, both groups quickly returned to their pre-adaptation performance levels. These findings indicate that neither the atDCS nor the sham group adapted to the high visual feedback ratio. However, the early reduction in RMSE observed in the atDCS group suggests that atDCS over the PPC may transiently enhance ankle tracking visuomotor control under the heightened visual feedback ratio condition, resulting in short-term improvements. Future research is warranted to explore whether multiple atDCS sessions over the PPC could provide long-term benefits for lower extremity visuomotor control.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":"101 ","pages":"Article 103351"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945725000338","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ankle motor control is crucial for balance maintenance and fall prevention. Neurocomputational models of motor control suggest that the posterior parietal cortex (PPC) plays a critical role in estimating body and environmental states, a process fundamental to motor control. Anodal transcranial direct current stimulation (atDCS) has been shown to modulate cortical excitability and alter behaviors accordingly. This study explored the impact of atDCS over the PPC on ankle tracking visuomotor control using a motor adaptation research paradigm in healthy young adults. Thirty-eight participants were randomly assigned to either an atDCS or sham control group. All participants completed an ankle tracking experiment divided into three phases: pre-adaptation, adaptation, and re-adaptation, with each phase comprising eight blocks of five trials. During the experiment, each participant wore a sensor on the non-dominant foot and performed continuous dorsiflexion and plantarflexion movements to track a target cursor on a screen. Visual feedback of the foot position was provided, with a 1:1 feedback ratio in the pre- and re-adaptation phases and a 2.5:1 ratio in the adaptation phase to promote visual-motor remapping. The atDCS group received 20 min of 2 mA atDCS over the PPC during the adaptation phase. Tracking performance on each trial was measured as the root mean squared error (RMSE) between the target and actual movement trajectories. Both groups showed similar RMSEs in the pre-adaptation phase (p > 0.05). However, in the adaptation phase, the atDCS group demonstrated a significant reduction from block 1 to block 2 (p = 0.001, Cohen's d = 0.86) and maintained this improved performance in the following blocks, while the sham group showed no significant changes throughout this phase (p > 0.05). In the re-adaptation phase, both groups quickly returned to their pre-adaptation performance levels. These findings indicate that neither the atDCS nor the sham group adapted to the high visual feedback ratio. However, the early reduction in RMSE observed in the atDCS group suggests that atDCS over the PPC may transiently enhance ankle tracking visuomotor control under the heightened visual feedback ratio condition, resulting in short-term improvements. Future research is warranted to explore whether multiple atDCS sessions over the PPC could provide long-term benefits for lower extremity visuomotor control.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."