Are regular black holes from pure gravity classified within the same thermodynamical topology?

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Physics Letters B Pub Date : 2025-03-18 DOI:10.1016/j.physletb.2025.139402
Sheng-Wei Wang , Shan-Ping Wu , Shao-Wen Wei
{"title":"Are regular black holes from pure gravity classified within the same thermodynamical topology?","authors":"Sheng-Wei Wang ,&nbsp;Shan-Ping Wu ,&nbsp;Shao-Wen Wei","doi":"10.1016/j.physletb.2025.139402","DOIUrl":null,"url":null,"abstract":"<div><div>Regular black holes, which avoid the essential central singularities, can be constructed through various methods, including nonlinear electrodynamics and quantum corrections. Recently, it was shown that via an infinite tower of higher-curvature corrections, one can obtain different regular black hole solutions in any spacetime dimension <span><math><mi>D</mi><mo>≥</mo><mn>5</mn></math></span>. Utilizing the concept of thermodynamical topology, we examine these black holes as topological thermodynamic defects, classifying them into distinct topological categories based on their generalized free energy. We demonstrate that the Hawking temperature of the black hole has at least one zero point at the small horizon radius limit. Under this fact, the regular black holes generated through the purely gravitational theories exhibit universal thermodynamical behaviors, strongly suggesting they belong to the same topological class. We present a comprehensive analysis of these properties, providing a clearer understanding of the fundamental nature of this type of regular black holes and their classification within the framework of thermodynamical topology.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"864 ","pages":"Article 139402"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325001625","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Regular black holes, which avoid the essential central singularities, can be constructed through various methods, including nonlinear electrodynamics and quantum corrections. Recently, it was shown that via an infinite tower of higher-curvature corrections, one can obtain different regular black hole solutions in any spacetime dimension D5. Utilizing the concept of thermodynamical topology, we examine these black holes as topological thermodynamic defects, classifying them into distinct topological categories based on their generalized free energy. We demonstrate that the Hawking temperature of the black hole has at least one zero point at the small horizon radius limit. Under this fact, the regular black holes generated through the purely gravitational theories exhibit universal thermodynamical behaviors, strongly suggesting they belong to the same topological class. We present a comprehensive analysis of these properties, providing a clearer understanding of the fundamental nature of this type of regular black holes and their classification within the framework of thermodynamical topology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
期刊最新文献
The weak gravity conjecture in the Vilkovisky-DeWitt effective action of quantum gravity Are regular black holes from pure gravity classified within the same thermodynamical topology? Black hole in the Dekel-Zhao dark matter profile Resonant leptogenesis in minimal U(1)X extensions of the Standard Model Strings as particle arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1