Construction of faba bean protein isolate delivery vector based on pH-driven technology: Formation mechanism, structural characterization, and delivery potential
Jianyu Huang , Xiaoqiong Li , Hui Zhao , Hongxia Li , Jian Kuang , Jianqiang Li , Jinbin Guo , Tao Huang , Jinjun Li
{"title":"Construction of faba bean protein isolate delivery vector based on pH-driven technology: Formation mechanism, structural characterization, and delivery potential","authors":"Jianyu Huang , Xiaoqiong Li , Hui Zhao , Hongxia Li , Jian Kuang , Jianqiang Li , Jinbin Guo , Tao Huang , Jinjun Li","doi":"10.1016/j.foodhyd.2025.111351","DOIUrl":null,"url":null,"abstract":"<div><div>PH-driven method has become a promising embedding method for hydrophobic active substances because of its safety and simplicity. In this study, in order to solve the application problems of quercetin (Que) such as poor water solubility and low bioavailability, faba bean protein isolate-quercetin nanoparticles with excellent embedding characteristics and delivery potential were successfully prepared by pH-driven method. Through multi-spectral and molecular docking techniques, it was showed that quercetin had a static quenching effect on faba bean protein isolate (FPI) in the alkalization stage and neutralization stage, and the mutual affinity between them changed into non-covalent interaction. In addition, according to the results of structural characterization and microscopic imaging, it was found that pH-driven changes in the secondary structure of FPI resulted in unfolding and refolding of the spatial structure, which provided an effective embedding platform for Que. At the same time, the delivery vector showed high stability and <span><math><mrow><mi>b</mi><mtext>io</mtext><mi>a</mi><mtext>ccessibility</mtext></mrow></math></span> in the environment of high temperature and gastrointestinal digestion, and could be effectively ingested by RAW264.7 macrophages. This study proved the potential of FPI in delivering active substances, and provided a new reference for promoting the development of quercetin precise nutrition delivery.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"166 ","pages":"Article 111351"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X2500311X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
PH-driven method has become a promising embedding method for hydrophobic active substances because of its safety and simplicity. In this study, in order to solve the application problems of quercetin (Que) such as poor water solubility and low bioavailability, faba bean protein isolate-quercetin nanoparticles with excellent embedding characteristics and delivery potential were successfully prepared by pH-driven method. Through multi-spectral and molecular docking techniques, it was showed that quercetin had a static quenching effect on faba bean protein isolate (FPI) in the alkalization stage and neutralization stage, and the mutual affinity between them changed into non-covalent interaction. In addition, according to the results of structural characterization and microscopic imaging, it was found that pH-driven changes in the secondary structure of FPI resulted in unfolding and refolding of the spatial structure, which provided an effective embedding platform for Que. At the same time, the delivery vector showed high stability and in the environment of high temperature and gastrointestinal digestion, and could be effectively ingested by RAW264.7 macrophages. This study proved the potential of FPI in delivering active substances, and provided a new reference for promoting the development of quercetin precise nutrition delivery.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.