Soy protein isolate gel improved with carrageenan-assisted limited enzymatic hydrolysis: Gelation properties and binding abilities with selected flavour compounds

IF 11 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Hydrocolloids Pub Date : 2025-03-17 DOI:10.1016/j.foodhyd.2025.111357
Shuo Zhang , Sibo Liu , Fangxiao Lou , Fuwei Sun , Qi Gong , Daoying Wang , Zhongjiang Wang , Zengwang Guo
{"title":"Soy protein isolate gel improved with carrageenan-assisted limited enzymatic hydrolysis: Gelation properties and binding abilities with selected flavour compounds","authors":"Shuo Zhang ,&nbsp;Sibo Liu ,&nbsp;Fangxiao Lou ,&nbsp;Fuwei Sun ,&nbsp;Qi Gong ,&nbsp;Daoying Wang ,&nbsp;Zhongjiang Wang ,&nbsp;Zengwang Guo","doi":"10.1016/j.foodhyd.2025.111357","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the aim was to explore the potential impacts of K-Carrageenan (KC) on the heat-induced gel properties, rheological properties, water-holding capacity, microstructure, and flavor absorption ability of Soy Protein Isolate (SPI) with varying degrees of hydrolysis (DH). The inclusion of KC notably enhanced the texture attributes, gel firmness, water holding capacity (WHC), and thermal stability of the composite gels, with particularly significant improvements observed at lower degrees of hydrolysis (DH6). It was found that SPI gels with high DH had poorer binding and release capabilities when compared to SPI gels with lower DH. However, when KC was added, the binding and release capacities of gels improved regardless of the DH. Moreover, the addition of KC and moderate hydrolysis together promoted the formation of compact gel structures in KSPH, resulting in a clear domination of elastic properties (G'&gt;G″). The microstructure of the gels significantly influenced the adsorption rate of flavor compounds, with a higher adsorption rate achieved in KSPH composite gels that featured a more homogeneous gel network and smaller cavities. Moderate hydrolysis resulted in increased hydrophobic interactions, hydrogen bonding, and electrostatic interactions within the KSPH composite gels, which contributed to pyrazine flavor compound adsorption. The hydrophobic interactions were the primary forces among SPH, KC, and 2,5-dimethylpyrazine, which were affected by DH. This work offers a new perspective on the application of enzymatic treatment to regulate the adsorption rate and release capacity of protein-polysaccharide composite gels for flavor compounds, which is crucial for enhancing the gel properties in plant protein products and the flavor adsorption.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"166 ","pages":"Article 111357"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X25003170","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the aim was to explore the potential impacts of K-Carrageenan (KC) on the heat-induced gel properties, rheological properties, water-holding capacity, microstructure, and flavor absorption ability of Soy Protein Isolate (SPI) with varying degrees of hydrolysis (DH). The inclusion of KC notably enhanced the texture attributes, gel firmness, water holding capacity (WHC), and thermal stability of the composite gels, with particularly significant improvements observed at lower degrees of hydrolysis (DH6). It was found that SPI gels with high DH had poorer binding and release capabilities when compared to SPI gels with lower DH. However, when KC was added, the binding and release capacities of gels improved regardless of the DH. Moreover, the addition of KC and moderate hydrolysis together promoted the formation of compact gel structures in KSPH, resulting in a clear domination of elastic properties (G'>G″). The microstructure of the gels significantly influenced the adsorption rate of flavor compounds, with a higher adsorption rate achieved in KSPH composite gels that featured a more homogeneous gel network and smaller cavities. Moderate hydrolysis resulted in increased hydrophobic interactions, hydrogen bonding, and electrostatic interactions within the KSPH composite gels, which contributed to pyrazine flavor compound adsorption. The hydrophobic interactions were the primary forces among SPH, KC, and 2,5-dimethylpyrazine, which were affected by DH. This work offers a new perspective on the application of enzymatic treatment to regulate the adsorption rate and release capacity of protein-polysaccharide composite gels for flavor compounds, which is crucial for enhancing the gel properties in plant protein products and the flavor adsorption.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Hydrocolloids
Food Hydrocolloids 工程技术-食品科技
CiteScore
19.90
自引率
14.00%
发文量
871
审稿时长
37 days
期刊介绍: Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication. The main areas of interest are: -Chemical and physicochemical characterisation Thermal properties including glass transitions and conformational changes- Rheological properties including viscosity, viscoelastic properties and gelation behaviour- The influence on organoleptic properties- Interfacial properties including stabilisation of dispersions, emulsions and foams- Film forming properties with application to edible films and active packaging- Encapsulation and controlled release of active compounds- The influence on health including their role as dietary fibre- Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes- New hydrocolloids and hydrocolloid sources of commercial potential. The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.
期刊最新文献
Soy protein isolate gel improved with carrageenan-assisted limited enzymatic hydrolysis: Gelation properties and binding abilities with selected flavour compounds Fabricating cellulose nanocrystals from passion fruit peel to enhance the properties of electrospun zein/poly(ethylene oxide) nanofibrous films Construction of faba bean protein isolate delivery vector based on pH-driven technology: Formation mechanism, structural characterization, and delivery potential Effect of dry heat treatment temperature of skim milk powder on the improved heat stability of recombined filled evaporated milk Regulatory effects of konjac fiber on chyme digestion and microbiota and its satiety-enhancing mechanism in gastrointestinal tract
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1