Tina Karimian , Peter Lanzerstorfer , Julian Weghuber
{"title":"Soft lithography-based biomolecule patterning techniques and their applications in subcellular protein interaction analysis","authors":"Tina Karimian , Peter Lanzerstorfer , Julian Weghuber","doi":"10.1016/j.mtbio.2025.101672","DOIUrl":null,"url":null,"abstract":"<div><div>Soft lithography-based contact printing techniques have evolved into versatile methods for creating micro- and nanoscale features of biomolecules on solid substrates. In this review we present the advances in soft lithography for biomolecule deposition and its applications in subcellular protein-protein interaction (PPI) analysis. We discuss various soft lithography techniques, including micro-contact printing (μCP), nano-contact printing (nCP), capillary nanostamping, and polymer-pen-lithography (PPL) and focus on their application in biomolecule patterning on diverse substrates. We then address related challenges and advancements, including substrate selection, surface activation methods, and stamp development. The specific advantages, limitations, and potential solutions for printing various inks and biomolecules are highlighted. Furthermore, recent advances in soft lithography-based biomolecule patterning for subcellular protein interaction analysis are emphasized, demonstrating the importance of these techniques for incorporating complex cellular events into PPI readout modalities and established protein deposition strategies. Finally, an overview of future technologies and enhanced applications is provided.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"32 ","pages":"Article 101672"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425002303","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Soft lithography-based contact printing techniques have evolved into versatile methods for creating micro- and nanoscale features of biomolecules on solid substrates. In this review we present the advances in soft lithography for biomolecule deposition and its applications in subcellular protein-protein interaction (PPI) analysis. We discuss various soft lithography techniques, including micro-contact printing (μCP), nano-contact printing (nCP), capillary nanostamping, and polymer-pen-lithography (PPL) and focus on their application in biomolecule patterning on diverse substrates. We then address related challenges and advancements, including substrate selection, surface activation methods, and stamp development. The specific advantages, limitations, and potential solutions for printing various inks and biomolecules are highlighted. Furthermore, recent advances in soft lithography-based biomolecule patterning for subcellular protein interaction analysis are emphasized, demonstrating the importance of these techniques for incorporating complex cellular events into PPI readout modalities and established protein deposition strategies. Finally, an overview of future technologies and enhanced applications is provided.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).