Fardin Jalil Piran , Zhiling Chen , Mohsen Imani , Farhad Imani
{"title":"Privacy-Preserving Federated Learning with Differentially Private Hyperdimensional Computing","authors":"Fardin Jalil Piran , Zhiling Chen , Mohsen Imani , Farhad Imani","doi":"10.1016/j.compeleceng.2025.110261","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning (FL) has become a key method for preserving data privacy in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally while transmitting only model updates. Despite this design, FL remains susceptible to threats such as model inversion and membership inference attacks, which can reveal private training data. Differential Privacy (DP) techniques are often introduced to mitigate these risks, but simply injecting DP noise into black-box ML models can compromise accuracy, particularly in dynamic IoT contexts, where continuous, lifelong learning leads to excessive noise accumulation. To address this challenge, we propose Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy), an eXplainable Artificial Intelligence (XAI) framework that integrates neuro-symbolic computing and DP. Unlike conventional approaches, FedHDPrivacy actively monitors the cumulative noise across learning rounds and adds only the additional noise required to satisfy privacy constraints. In a real-world application for monitoring manufacturing machining processes, FedHDPrivacy maintains high performance while surpassing standard FL frameworks — Federated Averaging (FedAvg), Federated Proximal (FedProx), Federated Normalized Averaging (FedNova), and Federated Optimization (FedOpt) — by up to 37%. Looking ahead, FedHDPrivacy offers a promising avenue for further enhancements, such as incorporating multimodal data fusion.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110261"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625002046","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning (FL) has become a key method for preserving data privacy in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally while transmitting only model updates. Despite this design, FL remains susceptible to threats such as model inversion and membership inference attacks, which can reveal private training data. Differential Privacy (DP) techniques are often introduced to mitigate these risks, but simply injecting DP noise into black-box ML models can compromise accuracy, particularly in dynamic IoT contexts, where continuous, lifelong learning leads to excessive noise accumulation. To address this challenge, we propose Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy), an eXplainable Artificial Intelligence (XAI) framework that integrates neuro-symbolic computing and DP. Unlike conventional approaches, FedHDPrivacy actively monitors the cumulative noise across learning rounds and adds only the additional noise required to satisfy privacy constraints. In a real-world application for monitoring manufacturing machining processes, FedHDPrivacy maintains high performance while surpassing standard FL frameworks — Federated Averaging (FedAvg), Federated Proximal (FedProx), Federated Normalized Averaging (FedNova), and Federated Optimization (FedOpt) — by up to 37%. Looking ahead, FedHDPrivacy offers a promising avenue for further enhancements, such as incorporating multimodal data fusion.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.