Role of the extended Hilbert space in the attainability of the quantum Cramér–Rao bound for multiparameter estimation

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physics Letters A Pub Date : 2025-03-18 DOI:10.1016/j.physleta.2025.130445
Lorcán O. Conlon , Jun Suzuki , Ping Koy Lam , Syed M. Assad
{"title":"Role of the extended Hilbert space in the attainability of the quantum Cramér–Rao bound for multiparameter estimation","authors":"Lorcán O. Conlon ,&nbsp;Jun Suzuki ,&nbsp;Ping Koy Lam ,&nbsp;Syed M. Assad","doi":"10.1016/j.physleta.2025.130445","DOIUrl":null,"url":null,"abstract":"<div><div>The symmetric logarithmic derivative Cramér–Rao bound (SLDCRB) provides a fundamental limit to the minimum variance with which a set of unknown parameters can be estimated in an unbiased manner. It is known that the SLDCRB can be saturated provided the optimal measurements for the individual parameters commute with one another. However, when this is not the case the SLDCRB cannot be attained in general. In the experimentally relevant setting, where quantum states are measured individually, necessary and sufficient conditions for when the SLDCRB can be saturated are not known. In this setting the SLDCRB is attainable provided the SLD operators can be chosen to commute on an extended Hilbert space. However, beyond this relatively little is known about when the SLD operators can be chosen in this manner. In this paper we present explicit examples which demonstrate novel aspects of this condition. Our examples demonstrate that the SLD operators commuting on any two of the following three spaces: support space, support-kernel space and kernel space, is neither a necessary nor sufficient condition for commutativity on the extended space. We present a simple analytic example showing that the Nagaoka–Hayashi Cramér-Rao bound is not always attainable. Finally, we provide necessary and sufficient conditions for the attainability of the SLDCRB in the case when the kernel space is one-dimensional. These results provide new information on the necessary and sufficient conditions for the attainability of the SLDCRB.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"542 ","pages":"Article 130445"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125002257","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The symmetric logarithmic derivative Cramér–Rao bound (SLDCRB) provides a fundamental limit to the minimum variance with which a set of unknown parameters can be estimated in an unbiased manner. It is known that the SLDCRB can be saturated provided the optimal measurements for the individual parameters commute with one another. However, when this is not the case the SLDCRB cannot be attained in general. In the experimentally relevant setting, where quantum states are measured individually, necessary and sufficient conditions for when the SLDCRB can be saturated are not known. In this setting the SLDCRB is attainable provided the SLD operators can be chosen to commute on an extended Hilbert space. However, beyond this relatively little is known about when the SLD operators can be chosen in this manner. In this paper we present explicit examples which demonstrate novel aspects of this condition. Our examples demonstrate that the SLD operators commuting on any two of the following three spaces: support space, support-kernel space and kernel space, is neither a necessary nor sufficient condition for commutativity on the extended space. We present a simple analytic example showing that the Nagaoka–Hayashi Cramér-Rao bound is not always attainable. Finally, we provide necessary and sufficient conditions for the attainability of the SLDCRB in the case when the kernel space is one-dimensional. These results provide new information on the necessary and sufficient conditions for the attainability of the SLDCRB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
期刊最新文献
Role of the extended Hilbert space in the attainability of the quantum Cramér–Rao bound for multiparameter estimation Editorial Board Intrinsic nontrivial topology and van Hove singularities in superconductors YX2Si2 (X=Ni, Rh) Nonlocal dispersion and intermediate layer effects in insulator-insulator-metal plasmonic waveguides Giant enhancement of third-harmonic generation in epsilon-near-zero material by an ITO-SiO2 metagrating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1