Cole A. McCormick , Ernest H. Rutter , Hilary Corlett , Matthew Steele-MacInnis , Eivind Block Vagle , Fiona Whitaker , Cathy Hollis
{"title":"Zebra textures in fault-controlled, hydrothermal dolomite bodies: Coupled mechanisms of replacement, deformation, and cementation","authors":"Cole A. McCormick , Ernest H. Rutter , Hilary Corlett , Matthew Steele-MacInnis , Eivind Block Vagle , Fiona Whitaker , Cathy Hollis","doi":"10.1016/j.epsl.2025.119274","DOIUrl":null,"url":null,"abstract":"<div><div>Fault-controlled, hydrothermal dolomitization typically involves the interaction of high pressure (P), high temperature (T) fluids with the surrounding host-rock. A striking feature of hydrothermal dolomite bodies is the pattern development and periodicity of zebra textures, whereby alternating units of replacement dolomite (RD) and saddle dolomite (SD) form symmetrical RD-SD/SD-RD patterns. Zebra textures are often considered to be diagnostic of these elevated P/T conditions, but the roles of mechanical deformation and the localization of strain during dolomitization have received limited attention. Here we evaluate the effect of P/T perturbations on the genesis of zebra textures, alongside how strain-hardening mechanisms promote their characteristic pattern development. Published fluid inclusion homogenization and carbonate clumped isotope temperatures were compiled from the literature and the offset between these data were used as a geobarometer. Based on these pore-fluid pressures, a series of rock deformation experiments were conducted to reproduce zebra textures in the laboratory. Cylindrical rock samples were held in an annealed copper jacket and deformed in axisymmetric extension. As the rock underwent tensile failure, the copper jacket locally deformed by intracrystalline plasticity, strain-hardened, and stabilized each opening-mode fracture. As a result, a succession of closely spaced fractures formed along the length of the sample. In natural geological settings, an analogous process is inferred, whereby dilatancy hardening, precipitation hardening, and the stress shadow effect promote the rhythmicity that is a defining feature of zebra textures. Lastly, the effects of P/T perturbations on the solubility of dolomite, for a range of different fluid compositions, were evaluated using the Pitzer aqueous model in PHREEQC. This interdisciplinary study presents novel insights into the geomechanical and hydrochemical interaction between metasomatic fluids and carbonate rocks, which are of critical importance to our understanding of carbonate-hosted ore deposits in sedimentary basins worldwide.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"658 ","pages":"Article 119274"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25000731","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fault-controlled, hydrothermal dolomitization typically involves the interaction of high pressure (P), high temperature (T) fluids with the surrounding host-rock. A striking feature of hydrothermal dolomite bodies is the pattern development and periodicity of zebra textures, whereby alternating units of replacement dolomite (RD) and saddle dolomite (SD) form symmetrical RD-SD/SD-RD patterns. Zebra textures are often considered to be diagnostic of these elevated P/T conditions, but the roles of mechanical deformation and the localization of strain during dolomitization have received limited attention. Here we evaluate the effect of P/T perturbations on the genesis of zebra textures, alongside how strain-hardening mechanisms promote their characteristic pattern development. Published fluid inclusion homogenization and carbonate clumped isotope temperatures were compiled from the literature and the offset between these data were used as a geobarometer. Based on these pore-fluid pressures, a series of rock deformation experiments were conducted to reproduce zebra textures in the laboratory. Cylindrical rock samples were held in an annealed copper jacket and deformed in axisymmetric extension. As the rock underwent tensile failure, the copper jacket locally deformed by intracrystalline plasticity, strain-hardened, and stabilized each opening-mode fracture. As a result, a succession of closely spaced fractures formed along the length of the sample. In natural geological settings, an analogous process is inferred, whereby dilatancy hardening, precipitation hardening, and the stress shadow effect promote the rhythmicity that is a defining feature of zebra textures. Lastly, the effects of P/T perturbations on the solubility of dolomite, for a range of different fluid compositions, were evaluated using the Pitzer aqueous model in PHREEQC. This interdisciplinary study presents novel insights into the geomechanical and hydrochemical interaction between metasomatic fluids and carbonate rocks, which are of critical importance to our understanding of carbonate-hosted ore deposits in sedimentary basins worldwide.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.