{"title":"Real-Time Detection of D-Glucose Molecules in Exhaled Aerosols Using a Biochemical Sensor for Breathalyzer Applications","authors":"Pardis Sadeghi;Nader Lobandi;Rania Alshawabkeh;Amie Rui;William Sun;Juntong Chen;Bin Luo;Rui Huang;Nian X. Sun","doi":"10.1109/LSENS.2025.3546084","DOIUrl":null,"url":null,"abstract":"The growing prevalence of chronic diseases, such as diabetes, underscores the need for rapid, noninvasive monitoring technologies, as conventional methods are frequently invasive. Exhaled breath aerosol provides a noninvasive alternative to blood sampling for glucose monitoring, but its dilute nature demands highly sensitive sensors for micromolar-level detection. This study presents a novel biosensor utilizing a molecularly imprinted polymer designed to selectively target D-glucose molecules from exhaled breath aerosols. The sensor underwent thorough testing across a range of aerosolized glucose concentrations and was validated using exhaled breath condensate (EBC) samples from healthy subjects, utilizing a 3-D printed breathalyzer device. The findings demonstrate a significant correlation between D-glucose levels in EBC (aerosols) and sensor resistance.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 4","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10924313/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The growing prevalence of chronic diseases, such as diabetes, underscores the need for rapid, noninvasive monitoring technologies, as conventional methods are frequently invasive. Exhaled breath aerosol provides a noninvasive alternative to blood sampling for glucose monitoring, but its dilute nature demands highly sensitive sensors for micromolar-level detection. This study presents a novel biosensor utilizing a molecularly imprinted polymer designed to selectively target D-glucose molecules from exhaled breath aerosols. The sensor underwent thorough testing across a range of aerosolized glucose concentrations and was validated using exhaled breath condensate (EBC) samples from healthy subjects, utilizing a 3-D printed breathalyzer device. The findings demonstrate a significant correlation between D-glucose levels in EBC (aerosols) and sensor resistance.