Wachiranon Chuenchart, Christelle Sawaya, K C Surendra, Adam L Smith, Samir Kumar Khanal
{"title":"In-situ intermittent micro-aeration in food waste and sewage sludge anaerobic co-digestion: Performance, stability, and microbial dynamics.","authors":"Wachiranon Chuenchart, Christelle Sawaya, K C Surendra, Adam L Smith, Samir Kumar Khanal","doi":"10.1016/j.biortech.2025.132398","DOIUrl":null,"url":null,"abstract":"<p><p>Anaerobic co-digestion (AcoD) of sewage sludge (SS) with food waste (FW) is a practical approach in urban areas due to spatio-temporal availability of these co-substrates. While micro-aeration could enhance hydrolysis and control acidification during mono-digestion, the effects of micro-aeration on AcoD remains unclear. This study explored the influence of oxidation-reduction potential (ORP)-based in-situ micro-aeration on AcoD performance of SS and FW. Although mono-digestion of FW failed due to acidification and micro-aeration of SS was unstable due to high solids content and viscosity, micro-aeration improved specific biogas and methane yields by 21.1 % and 13.1 %, respectively, at the FW:SS ratio of 60:40 ((volatile solids (VS) basis). This improvement was observed at an organic loading rate of 2.25 g VS/L·d and alkalinity below 5000 mgCaCO<sub>3</sub>/L. The observed positive effect of micro-aeration was accompanied by changes in relative abundance of Aminicenantes. Functional analysis suggested that AcoD was driven by homoacetogenesis and acetoclastic methanogenesis.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132398"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132398","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Anaerobic co-digestion (AcoD) of sewage sludge (SS) with food waste (FW) is a practical approach in urban areas due to spatio-temporal availability of these co-substrates. While micro-aeration could enhance hydrolysis and control acidification during mono-digestion, the effects of micro-aeration on AcoD remains unclear. This study explored the influence of oxidation-reduction potential (ORP)-based in-situ micro-aeration on AcoD performance of SS and FW. Although mono-digestion of FW failed due to acidification and micro-aeration of SS was unstable due to high solids content and viscosity, micro-aeration improved specific biogas and methane yields by 21.1 % and 13.1 %, respectively, at the FW:SS ratio of 60:40 ((volatile solids (VS) basis). This improvement was observed at an organic loading rate of 2.25 g VS/L·d and alkalinity below 5000 mgCaCO3/L. The observed positive effect of micro-aeration was accompanied by changes in relative abundance of Aminicenantes. Functional analysis suggested that AcoD was driven by homoacetogenesis and acetoclastic methanogenesis.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.