{"title":"Cell Fate Determination of the Potato Shoot Apex and Stolon Tips Revealed by Single-Cell Transcriptome Analysis.","authors":"Chaocheng Guo, Zhuoran Huang, Siyu Luo, Xinyuan Wang, Jiahao Li, Guolong Yu, Yudong Wang, Xu Wang","doi":"10.1111/pce.15459","DOIUrl":null,"url":null,"abstract":"<p><p>Potato (Solanum tuberosum L.) is a starch-rich crop with two types of meristematic stems: the shoot and stolon. Shoots grow vertically, while stolons grow horizontally underground and produce tubers at their tips. However, transcriptional differences between shoot and stolon cells remain unclear. To address this, we performed single-cell RNA sequencing of the shoot apex and stolon tip, generating a comprehensive transcriptional landscape. We identified 23 distinct cell clusters with high cell heterogeneity, including cell-specific genes and conserved genes with cell-specific expression patterns. Hormone-related genes, particularly those involved in auxin and gibberellin pathways, exhibited distinct patterns among shoot and stolon cells. Meristematic cells were re-clustered based on the expression of StPOTH15, a homolog of SHOOT MERISTEMLESS (STM) in Arabidopsis. Co-expression networks of transcription factors identified the key transcription factors involved in stolon development. We also constructed developmental trajectories for xylem and phloem development using key vascular genes, including MP, XCP1, PP2A1 and SEOR1. Comparative analysis with Arabidopsis highlighted significant differences in cell type-specific transcript profiles. These results provide insights into the transcriptional divergence between potato shoot and stolon, and identify key transcription factors co-expressed with StPOTH15 that can be used to explore their roles in stolon development.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15459","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Potato (Solanum tuberosum L.) is a starch-rich crop with two types of meristematic stems: the shoot and stolon. Shoots grow vertically, while stolons grow horizontally underground and produce tubers at their tips. However, transcriptional differences between shoot and stolon cells remain unclear. To address this, we performed single-cell RNA sequencing of the shoot apex and stolon tip, generating a comprehensive transcriptional landscape. We identified 23 distinct cell clusters with high cell heterogeneity, including cell-specific genes and conserved genes with cell-specific expression patterns. Hormone-related genes, particularly those involved in auxin and gibberellin pathways, exhibited distinct patterns among shoot and stolon cells. Meristematic cells were re-clustered based on the expression of StPOTH15, a homolog of SHOOT MERISTEMLESS (STM) in Arabidopsis. Co-expression networks of transcription factors identified the key transcription factors involved in stolon development. We also constructed developmental trajectories for xylem and phloem development using key vascular genes, including MP, XCP1, PP2A1 and SEOR1. Comparative analysis with Arabidopsis highlighted significant differences in cell type-specific transcript profiles. These results provide insights into the transcriptional divergence between potato shoot and stolon, and identify key transcription factors co-expressed with StPOTH15 that can be used to explore their roles in stolon development.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.