{"title":"Ti-MXene/α-Ni(OH)2 nanostructures as high performance electrocatalyst for oxygen evolution reaction.","authors":"Mrunal Bhosale, Sadhasivam Thangarasu, Nagaraj Murugan, Yoong Ahm Kim, Taehwan Oh","doi":"10.1002/cssc.202402603","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, the strategy of homogenous inclusion of nanoparticles within the surface and interlayers of 2D MXenes was established to achieve effective OER performance. A greater quantity of ~6 nm sized Ni(OH)2 particles uniformly anchored on multi-layered accordion-like nanosheets of Ti3C2Tx. The strong interconnection of Ni(OH)2 on Ti3C2Tx promoting synergistic effects and improves electron transfer properties alongside the intrinsic OER activity. The Ti3C2Tx-Ni(OH)2-4 demonstrated remarkable OER activity by exhibiting a lower overpotential (235.54 mV at 10 mA/cm2) in alkaline conditions. Increased ECSA (2.925 mF cm-2), lower charge transfer resistance, lowering the reaction barrier and stabilizing/converting essential intermediates via the Ti3C2Tx-Ni(OH)2 electrocatalyst synergistically improve OER activity. The effective interaction between Ti3C2Tx and Ni(OH)2 in Ti3C2Tx-Ni(OH)2 improves stability during long-term operations. Moreover, a Ti3C2Tx-Ni(OH)2-4||Pt/C cell has 1.7V at 10 mA/cm2. It could be deduced that the usage of Ni(OH)2 as an electrocatalyst together with Ti3C2Tx can provide noteworthy water splitting properties.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402603"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402603","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, the strategy of homogenous inclusion of nanoparticles within the surface and interlayers of 2D MXenes was established to achieve effective OER performance. A greater quantity of ~6 nm sized Ni(OH)2 particles uniformly anchored on multi-layered accordion-like nanosheets of Ti3C2Tx. The strong interconnection of Ni(OH)2 on Ti3C2Tx promoting synergistic effects and improves electron transfer properties alongside the intrinsic OER activity. The Ti3C2Tx-Ni(OH)2-4 demonstrated remarkable OER activity by exhibiting a lower overpotential (235.54 mV at 10 mA/cm2) in alkaline conditions. Increased ECSA (2.925 mF cm-2), lower charge transfer resistance, lowering the reaction barrier and stabilizing/converting essential intermediates via the Ti3C2Tx-Ni(OH)2 electrocatalyst synergistically improve OER activity. The effective interaction between Ti3C2Tx and Ni(OH)2 in Ti3C2Tx-Ni(OH)2 improves stability during long-term operations. Moreover, a Ti3C2Tx-Ni(OH)2-4||Pt/C cell has 1.7V at 10 mA/cm2. It could be deduced that the usage of Ni(OH)2 as an electrocatalyst together with Ti3C2Tx can provide noteworthy water splitting properties.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology