Michi Sano, Ryan Tangney, Alexandria Thomsen, Mark K J Ooi
{"title":"Extreme fire severity interacts with seed traits to moderate post-fire species assemblages.","authors":"Michi Sano, Ryan Tangney, Alexandria Thomsen, Mark K J Ooi","doi":"10.1002/ajb2.70012","DOIUrl":null,"url":null,"abstract":"<p><strong>Premise: </strong>Climate change is globally pushing fire regimes to new extremes, with unprecedented large-scale severe fires. Persistent soil seed banks are a key mechanism for plant species recovery after fires, but extreme fire severity may generate soil temperatures beyond thresholds seeds are adapted to. Seeds are protected from lethal temperatures through soil burial, with temperatures decreasing with increasing depth. However, smaller seeds, due to their lower mass and corresponding energy stores, are restricted to emerging from shallower depths compared to the depths for larger seeds. We examined recruitment patterns across a landscape-scale gradient of fire severity to determine whether seed mass and dormancy class mediate shifts in community assemblages.</p><p><strong>Methods: </strong>We surveyed 25 sites in wet sclerophyll forests in southeastern Australia that had been burnt at either moderate, high, or extreme severity during the 2019-2020 Black Summer Fires. We measured abundance and calculated density of seedlings from 27 common native shrub species.</p><p><strong>Results: </strong>Extreme severity fires caused significant declines in seedling recruitment. Recruitment patterns differed between dormancy class, with steeper declines in seedling emergence for species with physiologically dormant (PD) than for physically dormant (PY) seeds at extreme fire severity. Relative emergence proportions differed between fire severity and seed size groups for both PY and PD species.</p><p><strong>Conclusions: </strong>Large-scale extreme severity fires favor larger-seeded species, shifting community composition. Future recurrent extreme fire events could therefore place smaller-seeded species at risk. Seed mass, dormancy class, and other seed traits should be considered when exploring post-fire responses, to better predict impacts on plant species.</p>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":" ","pages":"e70012"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajb2.70012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Premise: Climate change is globally pushing fire regimes to new extremes, with unprecedented large-scale severe fires. Persistent soil seed banks are a key mechanism for plant species recovery after fires, but extreme fire severity may generate soil temperatures beyond thresholds seeds are adapted to. Seeds are protected from lethal temperatures through soil burial, with temperatures decreasing with increasing depth. However, smaller seeds, due to their lower mass and corresponding energy stores, are restricted to emerging from shallower depths compared to the depths for larger seeds. We examined recruitment patterns across a landscape-scale gradient of fire severity to determine whether seed mass and dormancy class mediate shifts in community assemblages.
Methods: We surveyed 25 sites in wet sclerophyll forests in southeastern Australia that had been burnt at either moderate, high, or extreme severity during the 2019-2020 Black Summer Fires. We measured abundance and calculated density of seedlings from 27 common native shrub species.
Results: Extreme severity fires caused significant declines in seedling recruitment. Recruitment patterns differed between dormancy class, with steeper declines in seedling emergence for species with physiologically dormant (PD) than for physically dormant (PY) seeds at extreme fire severity. Relative emergence proportions differed between fire severity and seed size groups for both PY and PD species.
Conclusions: Large-scale extreme severity fires favor larger-seeded species, shifting community composition. Future recurrent extreme fire events could therefore place smaller-seeded species at risk. Seed mass, dormancy class, and other seed traits should be considered when exploring post-fire responses, to better predict impacts on plant species.
期刊介绍:
The American Journal of Botany (AJB), the flagship journal of the Botanical Society of America (BSA), publishes peer-reviewed, innovative, significant research of interest to a wide audience of plant scientists in all areas of plant biology (structure, function, development, diversity, genetics, evolution, systematics), all levels of organization (molecular to ecosystem), and all plant groups and allied organisms (cyanobacteria, algae, fungi, and lichens). AJB requires authors to frame their research questions and discuss their results in terms of major questions of plant biology. In general, papers that are too narrowly focused, purely descriptive, natural history, broad surveys, or that contain only preliminary data will not be considered.