An update on improvement and innovation in the management of adult thoracolumbar spinal deformity.

IF 2.2 3区 医学 Q2 ORTHOPEDICS BMC Musculoskeletal Disorders Pub Date : 2025-03-18 DOI:10.1186/s12891-025-08497-z
Thomas Pieters, Gabrielle Santangelo, Taylor Furst, Daniel M Sciubba
{"title":"An update on improvement and innovation in the management of adult thoracolumbar spinal deformity.","authors":"Thomas Pieters, Gabrielle Santangelo, Taylor Furst, Daniel M Sciubba","doi":"10.1186/s12891-025-08497-z","DOIUrl":null,"url":null,"abstract":"<p><p>Adult spinal deformity (ASD) is a spectrum of abnormalities of the thoracic and lumbar spine and has an increasing prevalence. It is associated with significant physical and mental disability in symptomatic patients. Given the increased rates and the morbidity associated with this disease, novel innovation in the diagnosis and treatment of such deformity is required. The SRS-Schwab classification system described coronal scoliotic deformity with sagittal modifiers. Other parameters, such as the sagittal vertical axis, pelvic tilt, T1 pelvic angle, pelvic incidence and lumbar lordosis attempted to quantify global sagittal balance. More recently, a focus on more patient specific parameters has been targeted to improve patient outcomes. The Roussouly classification system attempted to predict sagittal alignment parameters based on fixed parameters of the pelvis. Others determined the parameters based on patient age. Technological advances have also enhanced our understanding of ASD. Long cassette films and automated analyses have allowed standardization of these measurements across physicians. 3D printing has been used as an adjunct for both surgical planning and implants, both generic and patient specific, to improve outcomes. With these, advances in minimally invasive approaches have allowed ASD correction with lower complications and blood loss. Intraoperative navigation and the use of robotics has allowed improved accuracy in the care of these patients. Development of complex osteotomies have allowed for correction of advanced deformity. Fusion, however, is the ultimate goal of surgical ASD correction. Advances in biologics such as the use of recombinant Human Bone Morphogenetic Protein-2 have been used to improve fusion rates and combat pseudoarthrosis. Finally, post-operative advances in ASD patient care with emphasis on enhanced recovery after surgery has allowed improvements in hospital length of stay and pain scores. ASD is becoming a more ubiquitous diagnosis for spine surgeons with an increasing aging population. Improvement in the understanding of the diagnosis, spinopelvic parameters, imaging techniques, and post operative care are all aimed toward helping patients in whom care can be extremely difficult. Further study in ASD patient care will target advanced innovation to provide optimal treatment to these patients and allow for best possible outcomes.</p>","PeriodicalId":9189,"journal":{"name":"BMC Musculoskeletal Disorders","volume":"26 1","pages":"272"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11916344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Musculoskeletal Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12891-025-08497-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Adult spinal deformity (ASD) is a spectrum of abnormalities of the thoracic and lumbar spine and has an increasing prevalence. It is associated with significant physical and mental disability in symptomatic patients. Given the increased rates and the morbidity associated with this disease, novel innovation in the diagnosis and treatment of such deformity is required. The SRS-Schwab classification system described coronal scoliotic deformity with sagittal modifiers. Other parameters, such as the sagittal vertical axis, pelvic tilt, T1 pelvic angle, pelvic incidence and lumbar lordosis attempted to quantify global sagittal balance. More recently, a focus on more patient specific parameters has been targeted to improve patient outcomes. The Roussouly classification system attempted to predict sagittal alignment parameters based on fixed parameters of the pelvis. Others determined the parameters based on patient age. Technological advances have also enhanced our understanding of ASD. Long cassette films and automated analyses have allowed standardization of these measurements across physicians. 3D printing has been used as an adjunct for both surgical planning and implants, both generic and patient specific, to improve outcomes. With these, advances in minimally invasive approaches have allowed ASD correction with lower complications and blood loss. Intraoperative navigation and the use of robotics has allowed improved accuracy in the care of these patients. Development of complex osteotomies have allowed for correction of advanced deformity. Fusion, however, is the ultimate goal of surgical ASD correction. Advances in biologics such as the use of recombinant Human Bone Morphogenetic Protein-2 have been used to improve fusion rates and combat pseudoarthrosis. Finally, post-operative advances in ASD patient care with emphasis on enhanced recovery after surgery has allowed improvements in hospital length of stay and pain scores. ASD is becoming a more ubiquitous diagnosis for spine surgeons with an increasing aging population. Improvement in the understanding of the diagnosis, spinopelvic parameters, imaging techniques, and post operative care are all aimed toward helping patients in whom care can be extremely difficult. Further study in ASD patient care will target advanced innovation to provide optimal treatment to these patients and allow for best possible outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Musculoskeletal Disorders
BMC Musculoskeletal Disorders 医学-风湿病学
CiteScore
3.80
自引率
8.70%
发文量
1017
审稿时长
3-6 weeks
期刊介绍: BMC Musculoskeletal Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of musculoskeletal disorders, as well as related molecular genetics, pathophysiology, and epidemiology. The scope of the Journal covers research into rheumatic diseases where the primary focus relates specifically to a component(s) of the musculoskeletal system.
期刊最新文献
Comparison of the clinical efficacy of patellar lateral retraction and patellar eversion in total knee arthroplasty: a systematic review and meta-analysis. The prevalence and surgical outcome of late diagnosed hip dysplasia in children with Prader-Willi syndrome: a retrospective study. Muscle loading and endochondral ossification are involved in the regeneration of a fibrocartilaginous enthesis during tendon to bone healing in rabbits. An update on improvement and innovation in the management of adult thoracolumbar spinal deformity. Evaluating the impact of movement representation techniques on recovery outcomes in post-orthopaedic surgery individuals: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1