Explainable deep learning algorithm for identifying cerebral venous sinus thrombosis-related hemorrhage (CVST-ICH) from spontaneous intracerebral hemorrhage using computed tomography.

IF 9.6 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL EClinicalMedicine Pub Date : 2025-02-26 eCollection Date: 2025-03-01 DOI:10.1016/j.eclinm.2025.103128
Kai-Cheng Yang, Yunzhi Xu, Qing Lin, Li-Li Tang, Jia-Wei Zhong, Hong-Na An, Yan-Qin Zeng, Ke Jia, Yujia Jin, Guoshen Yu, Feng Gao, Li Zhao, Lu-Sha Tong
{"title":"Explainable deep learning algorithm for identifying cerebral venous sinus thrombosis-related hemorrhage (CVST-ICH) from spontaneous intracerebral hemorrhage using computed tomography.","authors":"Kai-Cheng Yang, Yunzhi Xu, Qing Lin, Li-Li Tang, Jia-Wei Zhong, Hong-Na An, Yan-Qin Zeng, Ke Jia, Yujia Jin, Guoshen Yu, Feng Gao, Li Zhao, Lu-Sha Tong","doi":"10.1016/j.eclinm.2025.103128","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Misdiagnosis of hemorrhage secondary to cerebral venous sinus thrombosis (CVST-ICH) as arterial-origin spontaneous intracerebral hemorrhage (sICH) can lead to inappropriate treatment and the potential for severe adverse outcomes. The current practice for identifying CVST-ICH involves venography, which, despite being increasingly utilized in many centers, is not typically used as the initial imaging modality for ICH patients. The study aimed to develop an explainable deep learning model to quickly identify ICH caused by CVST based on non-contrast computed tomography (NCCT).</p><p><strong>Methods: </strong>The study population included patients diagnosed with CVST-ICH and other spontaneous ICH from January 2016 to March 2023 at the Second Affiliated Hospital of Zhejiang University, Taizhou First People's Hospital, Taizhou Hospital, Quzhou Second People's Hospital, and Longyan First People's Hospital. A transfer learning-based 3D U-Net with segmentation and classification was proposed and developed only on admission plain CT. Model performance was assessed using the area under the curve (AUC), sensitivity, and specificity metrics. For further evaluation, the average diagnostic performance of nine doctors on plain CT was compared with model assistance. Interpretability methods, including Grad-CAM++, SHAP, IG, and occlusion, were employed to understand the model's attention.</p><p><strong>Findings: </strong>An internal dataset was constructed using propensity score matching based on age, initially including 102 CVST-ICH patients (median age: 44 [29, 61] years) and 683 sICH patients (median age: 65 [52, 73] years). After matching, 102 CVST-ICH patients and 306 sICH patients (median age: 50 [40, 62] years) were selected. An external dataset consisted of 38 CVST-ICH and 119 sICH patients from four other hospitals. Validation showed AUC 0·94, sensitivity 0·96, and specificity 0·8 for the internal testing subset; AUC 0·85, sensitivity 0·87, and specificity 0·82 for the external dataset, respectively. The discrimination performance of nine doctors interpreting CT images significantly improved with the assistance of the proposed model (accuracy 0·79 vs 0·71, sensitivity 0·88 vs 0·81, specificity 0·75 vs 0·68, <i>p</i> < 0·05). Interpretability methods highlighted the attention of model to the features of hemorrhage edge appearance.</p><p><strong>Interpretation: </strong>The present model demonstrated high-performing and robust results on discrimination between CVST-ICH and spontaneous ICH, and aided doctors' diagnosis in clinical practice as well. Prospective validation with larger-sample size is required.</p><p><strong>Funding: </strong>The work was funded by the National Key R&D Program of China (2023YFE0118900), National Natural Science Foundation of China (No.81971155 and No.81471168), the Science and Technology Department of Zhejiang Province (LGJ22H180004), Medical and Health Science and Technology Project of Zhejiang Province (No.2022KY174), the 'Pioneer' R&D Program of Zhejiang (No. 2024C03006 and No. 2023C03026) and the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University.</p>","PeriodicalId":11393,"journal":{"name":"EClinicalMedicine","volume":"81 ","pages":"103128"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EClinicalMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.eclinm.2025.103128","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Misdiagnosis of hemorrhage secondary to cerebral venous sinus thrombosis (CVST-ICH) as arterial-origin spontaneous intracerebral hemorrhage (sICH) can lead to inappropriate treatment and the potential for severe adverse outcomes. The current practice for identifying CVST-ICH involves venography, which, despite being increasingly utilized in many centers, is not typically used as the initial imaging modality for ICH patients. The study aimed to develop an explainable deep learning model to quickly identify ICH caused by CVST based on non-contrast computed tomography (NCCT).

Methods: The study population included patients diagnosed with CVST-ICH and other spontaneous ICH from January 2016 to March 2023 at the Second Affiliated Hospital of Zhejiang University, Taizhou First People's Hospital, Taizhou Hospital, Quzhou Second People's Hospital, and Longyan First People's Hospital. A transfer learning-based 3D U-Net with segmentation and classification was proposed and developed only on admission plain CT. Model performance was assessed using the area under the curve (AUC), sensitivity, and specificity metrics. For further evaluation, the average diagnostic performance of nine doctors on plain CT was compared with model assistance. Interpretability methods, including Grad-CAM++, SHAP, IG, and occlusion, were employed to understand the model's attention.

Findings: An internal dataset was constructed using propensity score matching based on age, initially including 102 CVST-ICH patients (median age: 44 [29, 61] years) and 683 sICH patients (median age: 65 [52, 73] years). After matching, 102 CVST-ICH patients and 306 sICH patients (median age: 50 [40, 62] years) were selected. An external dataset consisted of 38 CVST-ICH and 119 sICH patients from four other hospitals. Validation showed AUC 0·94, sensitivity 0·96, and specificity 0·8 for the internal testing subset; AUC 0·85, sensitivity 0·87, and specificity 0·82 for the external dataset, respectively. The discrimination performance of nine doctors interpreting CT images significantly improved with the assistance of the proposed model (accuracy 0·79 vs 0·71, sensitivity 0·88 vs 0·81, specificity 0·75 vs 0·68, p < 0·05). Interpretability methods highlighted the attention of model to the features of hemorrhage edge appearance.

Interpretation: The present model demonstrated high-performing and robust results on discrimination between CVST-ICH and spontaneous ICH, and aided doctors' diagnosis in clinical practice as well. Prospective validation with larger-sample size is required.

Funding: The work was funded by the National Key R&D Program of China (2023YFE0118900), National Natural Science Foundation of China (No.81971155 and No.81471168), the Science and Technology Department of Zhejiang Province (LGJ22H180004), Medical and Health Science and Technology Project of Zhejiang Province (No.2022KY174), the 'Pioneer' R&D Program of Zhejiang (No. 2024C03006 and No. 2023C03026) and the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EClinicalMedicine
EClinicalMedicine Medicine-Medicine (all)
CiteScore
18.90
自引率
1.30%
发文量
506
审稿时长
22 days
期刊介绍: eClinicalMedicine is a gold open-access clinical journal designed to support frontline health professionals in addressing the complex and rapid health transitions affecting societies globally. The journal aims to assist practitioners in overcoming healthcare challenges across diverse communities, spanning diagnosis, treatment, prevention, and health promotion. Integrating disciplines from various specialties and life stages, it seeks to enhance health systems as fundamental institutions within societies. With a forward-thinking approach, eClinicalMedicine aims to redefine the future of healthcare.
期刊最新文献
Deep learning-based model for prediction of early recurrence and therapy response on whole slide images in non-muscle-invasive bladder cancer: a retrospective, multicentre study. Explainable deep learning algorithm for identifying cerebral venous sinus thrombosis-related hemorrhage (CVST-ICH) from spontaneous intracerebral hemorrhage using computed tomography. Impact of delayed cord clamping on respiratory distress in late preterm and early term infants in elective cesarean section: a single centre, phase Ⅲ, randomised controlled trial. Effects of lifestyle interventions on mental health in children and adolescents with overweight or obesity: a systematic review and meta-analysis. Performance of an AI prediction tool for new-onset atrial fibrillation after coronary artery bypass grafting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1