Explainable deep learning algorithm for identifying cerebral venous sinus thrombosis-related hemorrhage (CVST-ICH) from spontaneous intracerebral hemorrhage using computed tomography.
Kai-Cheng Yang, Yunzhi Xu, Qing Lin, Li-Li Tang, Jia-Wei Zhong, Hong-Na An, Yan-Qin Zeng, Ke Jia, Yujia Jin, Guoshen Yu, Feng Gao, Li Zhao, Lu-Sha Tong
{"title":"Explainable deep learning algorithm for identifying cerebral venous sinus thrombosis-related hemorrhage (CVST-ICH) from spontaneous intracerebral hemorrhage using computed tomography.","authors":"Kai-Cheng Yang, Yunzhi Xu, Qing Lin, Li-Li Tang, Jia-Wei Zhong, Hong-Na An, Yan-Qin Zeng, Ke Jia, Yujia Jin, Guoshen Yu, Feng Gao, Li Zhao, Lu-Sha Tong","doi":"10.1016/j.eclinm.2025.103128","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Misdiagnosis of hemorrhage secondary to cerebral venous sinus thrombosis (CVST-ICH) as arterial-origin spontaneous intracerebral hemorrhage (sICH) can lead to inappropriate treatment and the potential for severe adverse outcomes. The current practice for identifying CVST-ICH involves venography, which, despite being increasingly utilized in many centers, is not typically used as the initial imaging modality for ICH patients. The study aimed to develop an explainable deep learning model to quickly identify ICH caused by CVST based on non-contrast computed tomography (NCCT).</p><p><strong>Methods: </strong>The study population included patients diagnosed with CVST-ICH and other spontaneous ICH from January 2016 to March 2023 at the Second Affiliated Hospital of Zhejiang University, Taizhou First People's Hospital, Taizhou Hospital, Quzhou Second People's Hospital, and Longyan First People's Hospital. A transfer learning-based 3D U-Net with segmentation and classification was proposed and developed only on admission plain CT. Model performance was assessed using the area under the curve (AUC), sensitivity, and specificity metrics. For further evaluation, the average diagnostic performance of nine doctors on plain CT was compared with model assistance. Interpretability methods, including Grad-CAM++, SHAP, IG, and occlusion, were employed to understand the model's attention.</p><p><strong>Findings: </strong>An internal dataset was constructed using propensity score matching based on age, initially including 102 CVST-ICH patients (median age: 44 [29, 61] years) and 683 sICH patients (median age: 65 [52, 73] years). After matching, 102 CVST-ICH patients and 306 sICH patients (median age: 50 [40, 62] years) were selected. An external dataset consisted of 38 CVST-ICH and 119 sICH patients from four other hospitals. Validation showed AUC 0·94, sensitivity 0·96, and specificity 0·8 for the internal testing subset; AUC 0·85, sensitivity 0·87, and specificity 0·82 for the external dataset, respectively. The discrimination performance of nine doctors interpreting CT images significantly improved with the assistance of the proposed model (accuracy 0·79 vs 0·71, sensitivity 0·88 vs 0·81, specificity 0·75 vs 0·68, <i>p</i> < 0·05). Interpretability methods highlighted the attention of model to the features of hemorrhage edge appearance.</p><p><strong>Interpretation: </strong>The present model demonstrated high-performing and robust results on discrimination between CVST-ICH and spontaneous ICH, and aided doctors' diagnosis in clinical practice as well. Prospective validation with larger-sample size is required.</p><p><strong>Funding: </strong>The work was funded by the National Key R&D Program of China (2023YFE0118900), National Natural Science Foundation of China (No.81971155 and No.81471168), the Science and Technology Department of Zhejiang Province (LGJ22H180004), Medical and Health Science and Technology Project of Zhejiang Province (No.2022KY174), the 'Pioneer' R&D Program of Zhejiang (No. 2024C03006 and No. 2023C03026) and the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University.</p>","PeriodicalId":11393,"journal":{"name":"EClinicalMedicine","volume":"81 ","pages":"103128"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EClinicalMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.eclinm.2025.103128","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Misdiagnosis of hemorrhage secondary to cerebral venous sinus thrombosis (CVST-ICH) as arterial-origin spontaneous intracerebral hemorrhage (sICH) can lead to inappropriate treatment and the potential for severe adverse outcomes. The current practice for identifying CVST-ICH involves venography, which, despite being increasingly utilized in many centers, is not typically used as the initial imaging modality for ICH patients. The study aimed to develop an explainable deep learning model to quickly identify ICH caused by CVST based on non-contrast computed tomography (NCCT).
Methods: The study population included patients diagnosed with CVST-ICH and other spontaneous ICH from January 2016 to March 2023 at the Second Affiliated Hospital of Zhejiang University, Taizhou First People's Hospital, Taizhou Hospital, Quzhou Second People's Hospital, and Longyan First People's Hospital. A transfer learning-based 3D U-Net with segmentation and classification was proposed and developed only on admission plain CT. Model performance was assessed using the area under the curve (AUC), sensitivity, and specificity metrics. For further evaluation, the average diagnostic performance of nine doctors on plain CT was compared with model assistance. Interpretability methods, including Grad-CAM++, SHAP, IG, and occlusion, were employed to understand the model's attention.
Findings: An internal dataset was constructed using propensity score matching based on age, initially including 102 CVST-ICH patients (median age: 44 [29, 61] years) and 683 sICH patients (median age: 65 [52, 73] years). After matching, 102 CVST-ICH patients and 306 sICH patients (median age: 50 [40, 62] years) were selected. An external dataset consisted of 38 CVST-ICH and 119 sICH patients from four other hospitals. Validation showed AUC 0·94, sensitivity 0·96, and specificity 0·8 for the internal testing subset; AUC 0·85, sensitivity 0·87, and specificity 0·82 for the external dataset, respectively. The discrimination performance of nine doctors interpreting CT images significantly improved with the assistance of the proposed model (accuracy 0·79 vs 0·71, sensitivity 0·88 vs 0·81, specificity 0·75 vs 0·68, p < 0·05). Interpretability methods highlighted the attention of model to the features of hemorrhage edge appearance.
Interpretation: The present model demonstrated high-performing and robust results on discrimination between CVST-ICH and spontaneous ICH, and aided doctors' diagnosis in clinical practice as well. Prospective validation with larger-sample size is required.
Funding: The work was funded by the National Key R&D Program of China (2023YFE0118900), National Natural Science Foundation of China (No.81971155 and No.81471168), the Science and Technology Department of Zhejiang Province (LGJ22H180004), Medical and Health Science and Technology Project of Zhejiang Province (No.2022KY174), the 'Pioneer' R&D Program of Zhejiang (No. 2024C03006 and No. 2023C03026) and the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University.
期刊介绍:
eClinicalMedicine is a gold open-access clinical journal designed to support frontline health professionals in addressing the complex and rapid health transitions affecting societies globally. The journal aims to assist practitioners in overcoming healthcare challenges across diverse communities, spanning diagnosis, treatment, prevention, and health promotion. Integrating disciplines from various specialties and life stages, it seeks to enhance health systems as fundamental institutions within societies. With a forward-thinking approach, eClinicalMedicine aims to redefine the future of healthcare.