PLK1 Downregulation Attenuates ET-1-Induced Cardiomyocyte Hypertrophy by Suppressing the ERK1/2 Pathway.

IF 2.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Translational Research Pub Date : 2025-03-17 DOI:10.1007/s12265-025-10604-3
Jie Ding, Anqi Yang, Liping Zhou, Fulei Zhang, Huixing Zhou, Yuemei Zhang, Yan Wang, Yi Liu, Dandan Liang, Yuanyuan Liu, Yahan Wu
{"title":"PLK1 Downregulation Attenuates ET-1-Induced Cardiomyocyte Hypertrophy by Suppressing the ERK1/2 Pathway.","authors":"Jie Ding, Anqi Yang, Liping Zhou, Fulei Zhang, Huixing Zhou, Yuemei Zhang, Yan Wang, Yi Liu, Dandan Liang, Yuanyuan Liu, Yahan Wu","doi":"10.1007/s12265-025-10604-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiomyocyte hypertrophy is a key remodeling response to cardiac stress and an independent risk factor for heart failure. However, the molecular mechanism of cardiomyocyte hypertrophy is not yet fully understood. We here found Polo-like kinase 1 (PLK1) was crucial in regulating endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. Notably, PLK1 expression was significantly elevated in ET-1-induced hypertrophic cardiomyocytes and pressure overload-induced hypertrophic cardiac tissue. Knocking down Plk1 reduced the cell size of hypertrophic cardiomyocytes and suppressed the expression of hypertrophic markers, including ANP, BNP and β-MHC. The PLK1 inhibitor BI2536 had similar effects on hypertrophic cardiomyocytes. Mechanistically, the ERK1/2 pathway was identified as the key downstream pathway mediating the effects of PLK1 on ET-1-induced cardiomyocyte hypertrophy. Finally, the deficiency of PLK1 attenuated the hypertrophy of hiPSC-CMs. In summary, our study revealed that PLK1 regulates ET-1-induced cardiomyocyte hypertrophy through the ERK1/2 pathway, providing insights into the pathogenesis and potential therapies for pathological cardiac hypertrophy.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12265-025-10604-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiomyocyte hypertrophy is a key remodeling response to cardiac stress and an independent risk factor for heart failure. However, the molecular mechanism of cardiomyocyte hypertrophy is not yet fully understood. We here found Polo-like kinase 1 (PLK1) was crucial in regulating endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. Notably, PLK1 expression was significantly elevated in ET-1-induced hypertrophic cardiomyocytes and pressure overload-induced hypertrophic cardiac tissue. Knocking down Plk1 reduced the cell size of hypertrophic cardiomyocytes and suppressed the expression of hypertrophic markers, including ANP, BNP and β-MHC. The PLK1 inhibitor BI2536 had similar effects on hypertrophic cardiomyocytes. Mechanistically, the ERK1/2 pathway was identified as the key downstream pathway mediating the effects of PLK1 on ET-1-induced cardiomyocyte hypertrophy. Finally, the deficiency of PLK1 attenuated the hypertrophy of hiPSC-CMs. In summary, our study revealed that PLK1 regulates ET-1-induced cardiomyocyte hypertrophy through the ERK1/2 pathway, providing insights into the pathogenesis and potential therapies for pathological cardiac hypertrophy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cardiovascular Translational Research
Journal of Cardiovascular Translational Research CARDIAC & CARDIOVASCULAR SYSTEMS-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
6.10
自引率
2.90%
发文量
148
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research. JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials. JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.
期刊最新文献
Inhibition of Egr2 Protects against TAC-induced Heart Failure in Mice by Suppressing Inflammation and Apoptosis Via Targeting Acot1 in Cardiomyocytes. PLK1 Downregulation Attenuates ET-1-Induced Cardiomyocyte Hypertrophy by Suppressing the ERK1/2 Pathway. Human Cardiac Microtissues Display Improved Engraftment and Survival in a Porcine Model of Myocardial Infarction. RNA Therapies in Cardio-Kidney-Metabolic Syndrome: Advancing Disease Management. A Novel Dual Latex Balloon Catheter for Temporarily Closing Acute Postinfarction Ventricle Septum Defect (VSD) in a Pig Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1