Oxytocin signaling in the ventral tegmental area mediates social isolation-induced craving for social interaction.

IF 9 2区 医学 Q1 CELL BIOLOGY Journal of Biomedical Science Pub Date : 2025-03-17 DOI:10.1186/s12929-025-01130-0
Hsin-Tzu Chang, Kuan-Hsiang Cheng, Yu-Chieh Hung, Kuei-Sen Hsu
{"title":"Oxytocin signaling in the ventral tegmental area mediates social isolation-induced craving for social interaction.","authors":"Hsin-Tzu Chang, Kuan-Hsiang Cheng, Yu-Chieh Hung, Kuei-Sen Hsu","doi":"10.1186/s12929-025-01130-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Social interaction is crucial for mental health across animal species. Social experiences, especially in early-life stages, strongly influence brain function and social behavior later in life. Acute social isolation (SI) increases motivation to seek social interaction, but little is known about its underlying neuronal and circuitry mechanisms. Here, we focus on oxytocin signaling in the ventral tegmental area (VTA), a vital node of the brain's reward network, as a potential mechanism for SI-induced craving for social interaction.</p><p><strong>Methods: </strong>Adolescent (4-week-old) or adult (14-week-old) male C57BL/6J mice underwent a 1-week SI. Free interaction, object exploration, three-chamber social approach, and habituation tests were used to assess social and non-social behavior changes. Viral vectors were used to decipher the underlying neural circuitry, and chemogenetic techniques were applied to modify neuronal activity.</p><p><strong>Results: </strong>We found that in male C57BL/6J mice, SI during adolescence, but not adulthood, leads to increased craving for social interaction and object exploration, accompanied by impaired social habituation, social novelty preference, and social recognition memory (SRM). SI-induced craving for social interaction and SRM deficit is still observed upon regrouping. Through cell-type-specific manipulations with designer receptors exclusively activated by designer drugs (DREADD), we show that oxytocin neurons in the paraventricular nucleus of the hypothalamus (PVN) are crucial for SI-induced social behavior changes. Chemogenetic activation of PVN oxytocin neurons recapitulates social behavior changes observed in SI mice, whereas chemogenetic inhibition of oxytocin neurons prevents social behavior changes caused by SI. Moreover, we found that dopaminergic neurons in the VTA mediate SI-induced craving for social interaction through their projections to the medial prefrontal cortex (mPFC), but not to the nucleus accumbens. Injection of a specific oxytocin receptor antagonist L368,899 into the VTA or chemical lesions of dopaminergic axon terminals in the mPFC with local application of 6-hydroxydopamine ameliorates SI-induced social behavior changes.</p><p><strong>Conclusions: </strong>These findings suggest that adolescent SI has enduring effects on social behaviors in male mice through an oxytocinergic modulation of the VTA-to-mPFC dopaminergic circuit activity.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"37"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-025-01130-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Social interaction is crucial for mental health across animal species. Social experiences, especially in early-life stages, strongly influence brain function and social behavior later in life. Acute social isolation (SI) increases motivation to seek social interaction, but little is known about its underlying neuronal and circuitry mechanisms. Here, we focus on oxytocin signaling in the ventral tegmental area (VTA), a vital node of the brain's reward network, as a potential mechanism for SI-induced craving for social interaction.

Methods: Adolescent (4-week-old) or adult (14-week-old) male C57BL/6J mice underwent a 1-week SI. Free interaction, object exploration, three-chamber social approach, and habituation tests were used to assess social and non-social behavior changes. Viral vectors were used to decipher the underlying neural circuitry, and chemogenetic techniques were applied to modify neuronal activity.

Results: We found that in male C57BL/6J mice, SI during adolescence, but not adulthood, leads to increased craving for social interaction and object exploration, accompanied by impaired social habituation, social novelty preference, and social recognition memory (SRM). SI-induced craving for social interaction and SRM deficit is still observed upon regrouping. Through cell-type-specific manipulations with designer receptors exclusively activated by designer drugs (DREADD), we show that oxytocin neurons in the paraventricular nucleus of the hypothalamus (PVN) are crucial for SI-induced social behavior changes. Chemogenetic activation of PVN oxytocin neurons recapitulates social behavior changes observed in SI mice, whereas chemogenetic inhibition of oxytocin neurons prevents social behavior changes caused by SI. Moreover, we found that dopaminergic neurons in the VTA mediate SI-induced craving for social interaction through their projections to the medial prefrontal cortex (mPFC), but not to the nucleus accumbens. Injection of a specific oxytocin receptor antagonist L368,899 into the VTA or chemical lesions of dopaminergic axon terminals in the mPFC with local application of 6-hydroxydopamine ameliorates SI-induced social behavior changes.

Conclusions: These findings suggest that adolescent SI has enduring effects on social behaviors in male mice through an oxytocinergic modulation of the VTA-to-mPFC dopaminergic circuit activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腹侧被盖区的催产素信号介导了社会隔离引起的对社会交往的渴望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
期刊最新文献
Oxytocin signaling in the ventral tegmental area mediates social isolation-induced craving for social interaction. Metformin sensitizes triple-negative breast cancer to histone deacetylase inhibitors by targeting FGFR4. REM sleep quality is associated with balanced tonic activity of the locus coeruleus during wakefulness. IL-19 as a promising theranostic target to reprogram the glioblastoma immunosuppressive microenvironment. Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1