Accelerated intracranial time-of-flight MR angiography with image-based deep learning image enhancement reduces scan times and improves image quality at 3-T and 1.5-T.
Young Hun Jeon, Chanrim Park, Kyung Hoon Lee, Kyu Sung Choi, Ji Ye Lee, Inpyeong Hwang, Roh-Eul Yoo, Tae Jin Yun, Seung Hong Choi, Ji-Hoon Kim, Chul-Ho Sohn, Koung Mi Kang
{"title":"Accelerated intracranial time-of-flight MR angiography with image-based deep learning image enhancement reduces scan times and improves image quality at 3-T and 1.5-T.","authors":"Young Hun Jeon, Chanrim Park, Kyung Hoon Lee, Kyu Sung Choi, Ji Ye Lee, Inpyeong Hwang, Roh-Eul Yoo, Tae Jin Yun, Seung Hong Choi, Ji-Hoon Kim, Chul-Ho Sohn, Koung Mi Kang","doi":"10.1007/s00234-025-03564-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Three-dimensional time-of-flight magnetic resonance angiography (TOF-MRA) is effective for cerebrovascular disease assessment, but clinical application is limited by long scan times and low spatial resolution. Recent advances in deep learning-based reconstruction have shown the potential to improve image quality and reduce scan times. This study aimed to evaluate the effectiveness of accelerated intracranial TOF-MRA using deep learning-based image enhancement (TOF-DL) compared to conventional TOF-MRA (TOF-Con) at both 3-T and 1.5-T.</p><p><strong>Materials and methods: </strong>In this retrospective study, patients who underwent both conventional and 40% accelerated TOF-MRA protocols on 1.5-T or 3-T scanners from July 2022 to March 2023 were included. A commercially available DL-based image enhancement algorithm was applied to the accelerated MRA. Quantitative image quality assessments included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contrast ratio (CR), and vessel sharpness (VS), while qualitative assessments were conducted using a five-point Likert scale. Cohen's d was used to compare the quantitative image metrics, and a cumulative link mixed regression model analyzed the readers' scores.</p><p><strong>Results: </strong>A total of 129 patients (mean age, 64 years ± 12 [SD], 99 at 3-T and 30 at 1.5-T) were included. TOF-DL showed significantly higher SNR, CNR, CR, and VS compared to TOF-Con (CNR = 183.89 vs. 45.58; CR = 0.63 vs. 0.59; VS = 0.73 vs. 0.61; all p < 0.001). The improvement in VS was more pronounced at 1.5-T (Cohen's d = 2.39) compared to 3-T HR and routine (Cohen's d = 0.83 and 0.75, respectively). TOF-DL also outperformed TOF-Con in qualitative image parameters, enhancing the visibility of small- and medium-sized vessels, regardless of the degree of resolution and field strength. TOF-DL showed comparable diagnostic accuracy (AUC: 0.77-0.85) to TOF-Con (AUC: 0.79-0.87) but had higher specificity for steno-occlusive lesions.</p><p><strong>Conclusions: </strong>Accelerated intracranial MRA with deep learning-based reconstruction reduces scan times by 40% and significantly enhances image quality over conventional TOF-MRA at both 3-T and 1.5-T.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-025-03564-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Three-dimensional time-of-flight magnetic resonance angiography (TOF-MRA) is effective for cerebrovascular disease assessment, but clinical application is limited by long scan times and low spatial resolution. Recent advances in deep learning-based reconstruction have shown the potential to improve image quality and reduce scan times. This study aimed to evaluate the effectiveness of accelerated intracranial TOF-MRA using deep learning-based image enhancement (TOF-DL) compared to conventional TOF-MRA (TOF-Con) at both 3-T and 1.5-T.
Materials and methods: In this retrospective study, patients who underwent both conventional and 40% accelerated TOF-MRA protocols on 1.5-T or 3-T scanners from July 2022 to March 2023 were included. A commercially available DL-based image enhancement algorithm was applied to the accelerated MRA. Quantitative image quality assessments included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contrast ratio (CR), and vessel sharpness (VS), while qualitative assessments were conducted using a five-point Likert scale. Cohen's d was used to compare the quantitative image metrics, and a cumulative link mixed regression model analyzed the readers' scores.
Results: A total of 129 patients (mean age, 64 years ± 12 [SD], 99 at 3-T and 30 at 1.5-T) were included. TOF-DL showed significantly higher SNR, CNR, CR, and VS compared to TOF-Con (CNR = 183.89 vs. 45.58; CR = 0.63 vs. 0.59; VS = 0.73 vs. 0.61; all p < 0.001). The improvement in VS was more pronounced at 1.5-T (Cohen's d = 2.39) compared to 3-T HR and routine (Cohen's d = 0.83 and 0.75, respectively). TOF-DL also outperformed TOF-Con in qualitative image parameters, enhancing the visibility of small- and medium-sized vessels, regardless of the degree of resolution and field strength. TOF-DL showed comparable diagnostic accuracy (AUC: 0.77-0.85) to TOF-Con (AUC: 0.79-0.87) but had higher specificity for steno-occlusive lesions.
Conclusions: Accelerated intracranial MRA with deep learning-based reconstruction reduces scan times by 40% and significantly enhances image quality over conventional TOF-MRA at both 3-T and 1.5-T.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.