Analysis of the SlRAF-like B gene family in tomato and the molecular mechanism of SlRAF7 in regulating cold stress resistance.

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Science Pub Date : 2025-03-15 DOI:10.1016/j.plantsci.2025.112475
Junxiao Li, Qingpeng Li, Fan Wang, Ruoxi Ding, Yixuan Shang, Xiaohui Hu, Songshen Hu
{"title":"Analysis of the SlRAF-like B gene family in tomato and the molecular mechanism of SlRAF7 in regulating cold stress resistance.","authors":"Junxiao Li, Qingpeng Li, Fan Wang, Ruoxi Ding, Yixuan Shang, Xiaohui Hu, Songshen Hu","doi":"10.1016/j.plantsci.2025.112475","DOIUrl":null,"url":null,"abstract":"<p><p>The SlRAF-like B gene family is crucial for the regulation of seed dormancy and response to osmotic stress. In this research, a bioinformatics approach was employed to identify a total of 18 members belonging to the SlRAF-like B gene family within the tomato genome. Phylogenetic analysis has categorized the identified SlRAF-like B genes into four distinct groups, revealing significant differences in conserved motifs and gene structure among the proteins within each cluster. Promoter sequence analysis revealed abundant stress, hormone, and light response elements, suggesting the involvement of SlRAF-like B genes in cold stress responses. RT-qPCR analysis showed that most SlRAF-like B genes are induced by cold stress. A knockout mutant of the SlRAF7 gene, belonging to the SlRAF-like B3 group, was generated and tested under normal and cold stress, demonstrating that SlRAF7 positively regulates cold resistance in tomato plants. Further analysis of antioxidant enzyme activities, expression of related genes, and key cold response genes (ICE1, CBFs, and COR genes) in different genotypes suggests that SlRAF7 may enhance cold resistance by modulating the antioxidant enzyme pathway and the CBF signaling pathway. This study provides initial insights into the physiological and molecular mechanisms that underlie cold stress tolerance in tomato, with a particular focus on the role of the SlRAF7 gene.</p>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":" ","pages":"112475"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plantsci.2025.112475","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The SlRAF-like B gene family is crucial for the regulation of seed dormancy and response to osmotic stress. In this research, a bioinformatics approach was employed to identify a total of 18 members belonging to the SlRAF-like B gene family within the tomato genome. Phylogenetic analysis has categorized the identified SlRAF-like B genes into four distinct groups, revealing significant differences in conserved motifs and gene structure among the proteins within each cluster. Promoter sequence analysis revealed abundant stress, hormone, and light response elements, suggesting the involvement of SlRAF-like B genes in cold stress responses. RT-qPCR analysis showed that most SlRAF-like B genes are induced by cold stress. A knockout mutant of the SlRAF7 gene, belonging to the SlRAF-like B3 group, was generated and tested under normal and cold stress, demonstrating that SlRAF7 positively regulates cold resistance in tomato plants. Further analysis of antioxidant enzyme activities, expression of related genes, and key cold response genes (ICE1, CBFs, and COR genes) in different genotypes suggests that SlRAF7 may enhance cold resistance by modulating the antioxidant enzyme pathway and the CBF signaling pathway. This study provides initial insights into the physiological and molecular mechanisms that underlie cold stress tolerance in tomato, with a particular focus on the role of the SlRAF7 gene.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Science
Plant Science 生物-生化与分子生物学
CiteScore
9.10
自引率
1.90%
发文量
322
审稿时长
33 days
期刊介绍: Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment. Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.
期刊最新文献
GhCTEF2 encodes a PLS-type PPR protein required for chloroplast development and plastid RNA editing in cotton. Nitric oxide production and protein S-nitrosation in algae. Analysis of the SlRAF-like B gene family in tomato and the molecular mechanism of SlRAF7 in regulating cold stress resistance. Role of jasmonates in plant response to temperature stress. Tomato DC1 domain protein SlCHP16 interacts with the 14–3-3 protein TFT12 to regulate flower development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1