Yuhong Wang, Yizhe Li, Shihong Chen, Tingting Yu, Weiyan Sun, Jiao Liu, Huiwen Ren, Yao Zhou, Lu Wang, Xixi Tao, Ronglu Du, Wenlong Shang, Yinxiu Li, Danyang Tian, Bei Wang, Yujun Shen, Qian Liu, Ying Yu
{"title":"Notch2 Signaling Drives Cardiac Hypertrophy by Suppressing Purine Nucleotide Metabolism.","authors":"Yuhong Wang, Yizhe Li, Shihong Chen, Tingting Yu, Weiyan Sun, Jiao Liu, Huiwen Ren, Yao Zhou, Lu Wang, Xixi Tao, Ronglu Du, Wenlong Shang, Yinxiu Li, Danyang Tian, Bei Wang, Yujun Shen, Qian Liu, Ying Yu","doi":"10.34133/research.0635","DOIUrl":null,"url":null,"abstract":"<p><p>Gain-of-function mutations of Notch2 cause the rare autosomal dominant disorder known as Hajdu-Cheney syndrome (HCS). Most patients with HCS develop congenital heart disease; however, the precise mechanisms remain elusive. Here, a murine model expressing the human Notch2 intracellular domain (hN2ICD) in cardiomyocytes (hN2ICD-Tg<sup>CM</sup>) was generated and the mice spontaneously developed ventricular diastolic dysfunction with preserved ejection fraction and cardiac hypertrophy. Ectopic hN2ICD expression promoted cardiomyocyte hypertrophy by suppressing adenylosuccinate lyase (ADSL)-mediated adenosine 5'-monophosphate (AMP) generation, which further enhanced the activation of the mammalian target of rapamycin complex 1 pathway by reducing AMP-activated kinase activity. Hairy and enhancer of split 1 silencing abrogated hN2ICD-induced cardiomyocyte hypertrophy by increasing Adsl transcription. Importantly, pharmacological activation of AMP-activated kinase ameliorated cardiac hypertrophy and dysfunction in hN2ICD-Tg<sup>CM</sup> mice. The frameshift mutation in Notch2 exon 34 (c.6426dupT), which causes early-onset HCS, induces AC16 human cardiomyocyte hypertrophy through suppressing ADSL-mediated AMP generation. Thus, targeting Notch2-mediated purine nucleotide metabolism may be an attractive therapeutic approach to heart failure treatment.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0635"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0635","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Gain-of-function mutations of Notch2 cause the rare autosomal dominant disorder known as Hajdu-Cheney syndrome (HCS). Most patients with HCS develop congenital heart disease; however, the precise mechanisms remain elusive. Here, a murine model expressing the human Notch2 intracellular domain (hN2ICD) in cardiomyocytes (hN2ICD-TgCM) was generated and the mice spontaneously developed ventricular diastolic dysfunction with preserved ejection fraction and cardiac hypertrophy. Ectopic hN2ICD expression promoted cardiomyocyte hypertrophy by suppressing adenylosuccinate lyase (ADSL)-mediated adenosine 5'-monophosphate (AMP) generation, which further enhanced the activation of the mammalian target of rapamycin complex 1 pathway by reducing AMP-activated kinase activity. Hairy and enhancer of split 1 silencing abrogated hN2ICD-induced cardiomyocyte hypertrophy by increasing Adsl transcription. Importantly, pharmacological activation of AMP-activated kinase ameliorated cardiac hypertrophy and dysfunction in hN2ICD-TgCM mice. The frameshift mutation in Notch2 exon 34 (c.6426dupT), which causes early-onset HCS, induces AC16 human cardiomyocyte hypertrophy through suppressing ADSL-mediated AMP generation. Thus, targeting Notch2-mediated purine nucleotide metabolism may be an attractive therapeutic approach to heart failure treatment.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.