{"title":"In vivo quantitative proteomic analysis of porcine alveolar macrophages in PRRSV-infected pigs.","authors":"Ying Wei, Chuangchao Zou, Siying Zeng, Ouyang Peng, Guangli Hu, Yihui Huang, Qiuping Xu, Fangyu Hu, Yongchang Cao, Hao Zhang","doi":"10.1016/j.virs.2025.03.002","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine reproductive and respiratory syndrome (PRRS), a highly infectious immunosuppressive disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), has led to significant economic losses in the global swine industry. The complexity of preventing and controlling PRRS, compounded by the limited efficacy of current vaccines, underscores the urgent need to identify antiviral targets and develop effective therapeutics against PRRSV. From the perspective of virus-host interactions, the discovery of target molecules associated with PRRSV resistance offers a promising strategy for future disease management. In this study, we conduct a comprehensive proteomic analysis using data-independent acquisition (DIA) mode to investigate the host response throughout the acute phase of PRRSV infection. This approach provides critical insights into the regulation of host antiviral and immune pathways during acute infection, advancing our theoretical understanding of PRRSV-host interactions and host gene dynamics during this critical phase. Notably, we identified SCARB2, a major lysosomal membrane protein associated with cholesterol metabolism, as a potential regulator of PRRSV replication. These findings offer novel perspectives for the prevention and control of PRRSV, contributing to the development of targeted antiviral strategies.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.virs.2025.03.002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a highly infectious immunosuppressive disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), has led to significant economic losses in the global swine industry. The complexity of preventing and controlling PRRS, compounded by the limited efficacy of current vaccines, underscores the urgent need to identify antiviral targets and develop effective therapeutics against PRRSV. From the perspective of virus-host interactions, the discovery of target molecules associated with PRRSV resistance offers a promising strategy for future disease management. In this study, we conduct a comprehensive proteomic analysis using data-independent acquisition (DIA) mode to investigate the host response throughout the acute phase of PRRSV infection. This approach provides critical insights into the regulation of host antiviral and immune pathways during acute infection, advancing our theoretical understanding of PRRSV-host interactions and host gene dynamics during this critical phase. Notably, we identified SCARB2, a major lysosomal membrane protein associated with cholesterol metabolism, as a potential regulator of PRRSV replication. These findings offer novel perspectives for the prevention and control of PRRSV, contributing to the development of targeted antiviral strategies.
Virologica SinicaBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
7.70
自引率
1.80%
发文量
3149
期刊介绍:
Virologica Sinica is an international journal which aims at presenting the cutting-edge research on viruses all over the world. The journal publishes peer-reviewed original research articles, reviews, and letters to the editor, to encompass the latest developments in all branches of virology, including research on animal, plant and microbe viruses. The journal welcomes articles on virus discovery and characterization, viral epidemiology, viral pathogenesis, virus-host interaction, vaccine development, antiviral agents and therapies, and virus related bio-techniques. Virologica Sinica, the official journal of Chinese Society for Microbiology, will serve as a platform for the communication and exchange of academic information and ideas in an international context.
Electronic ISSN: 1995-820X; Print ISSN: 1674-0769