Automated Identification of Stroke Thrombolysis Contraindications from Synthetic Clinical Notes - a Proof-of-Concept Study.

IF 2 Q3 PERIPHERAL VASCULAR DISEASE Cerebrovascular Diseases Extra Pub Date : 2025-03-17 DOI:10.1159/000545317
Bing Yu Chen, Fares Antaki, Marco Gonzalez, Ken Uchino, Samer Albahra, Scott Robertson, Sidonie Ibrikji, Eric Aube, Andrew Russman, Muhammad Shazam Hussain
{"title":"Automated Identification of Stroke Thrombolysis Contraindications from Synthetic Clinical Notes - a Proof-of-Concept Study.","authors":"Bing Yu Chen, Fares Antaki, Marco Gonzalez, Ken Uchino, Samer Albahra, Scott Robertson, Sidonie Ibrikji, Eric Aube, Andrew Russman, Muhammad Shazam Hussain","doi":"10.1159/000545317","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Timely thrombolytic therapy improves outcomes in acute ischemic stroke. Manual chart review to screen for thrombolysis contraindications may be time-consuming and prone to errors. We developed and tested a large language model (LLM)-based tool to identify thrombolysis contraindications from clinical notes using synthetic data in a proof-of-concept study.</p><p><strong>Methods: </strong>We generated 150 synthetic clinical notes containing randomly assigned thrombolysis contraindications using LLMs. We then used Llama 3.1 405B with a custom prompt to generate a list of thrombolysis contraindications from each note. Performance was evaluated using sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and F1 score.</p><p><strong>Results: </strong>A total of 150 synthetic notes were generated using five different models: ChatGPT-4o, Llama 3.1 405B, Llama 3.1 70B, ChatGPT-4o mini, and Gemini 1.5 Flash. On average, each note contained 241.6 words (SD 110.7; range 80-549) and included 1.5 contraindications (SD 1.1; range 0-5). Our tool achieved a sensitivity of 90.9% (95% CI: 86.3%-94.3%), specificity of 99.2% (95% CI: 98.8%-99.5%), PPV of 87.7% (95% CI: 82.7%-91.7%), NPV of 99.4% (95% CI: 99.1%-99.6%), accuracy of 98.7% (95% CI: 98.2%-99.0%), and an F1 score of 0.892. Among the false positives, 24 (86%) were due to the inclusion of irrelevant contraindications, and 4 (14%) resulted from repetitive information. No hallucinations were observed.</p><p><strong>Conclusion: </strong>Our LLM-based tool may identify stroke thrombolysis contraindications from synthetic clinical notes with high sensitivity and PPV. Future studies will validate its performance using real EMR data and integrate it into acute stroke workflows to facilitate faster and safer thrombolysis decision-making.</p>","PeriodicalId":45709,"journal":{"name":"Cerebrovascular Diseases Extra","volume":" ","pages":"1-15"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebrovascular Diseases Extra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000545317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Timely thrombolytic therapy improves outcomes in acute ischemic stroke. Manual chart review to screen for thrombolysis contraindications may be time-consuming and prone to errors. We developed and tested a large language model (LLM)-based tool to identify thrombolysis contraindications from clinical notes using synthetic data in a proof-of-concept study.

Methods: We generated 150 synthetic clinical notes containing randomly assigned thrombolysis contraindications using LLMs. We then used Llama 3.1 405B with a custom prompt to generate a list of thrombolysis contraindications from each note. Performance was evaluated using sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and F1 score.

Results: A total of 150 synthetic notes were generated using five different models: ChatGPT-4o, Llama 3.1 405B, Llama 3.1 70B, ChatGPT-4o mini, and Gemini 1.5 Flash. On average, each note contained 241.6 words (SD 110.7; range 80-549) and included 1.5 contraindications (SD 1.1; range 0-5). Our tool achieved a sensitivity of 90.9% (95% CI: 86.3%-94.3%), specificity of 99.2% (95% CI: 98.8%-99.5%), PPV of 87.7% (95% CI: 82.7%-91.7%), NPV of 99.4% (95% CI: 99.1%-99.6%), accuracy of 98.7% (95% CI: 98.2%-99.0%), and an F1 score of 0.892. Among the false positives, 24 (86%) were due to the inclusion of irrelevant contraindications, and 4 (14%) resulted from repetitive information. No hallucinations were observed.

Conclusion: Our LLM-based tool may identify stroke thrombolysis contraindications from synthetic clinical notes with high sensitivity and PPV. Future studies will validate its performance using real EMR data and integrate it into acute stroke workflows to facilitate faster and safer thrombolysis decision-making.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cerebrovascular Diseases Extra
Cerebrovascular Diseases Extra PERIPHERAL VASCULAR DISEASE-
CiteScore
3.50
自引率
0.00%
发文量
16
审稿时长
8 weeks
期刊介绍: This open access and online-only journal publishes original articles covering the entire spectrum of stroke and cerebrovascular research, drawing from a variety of specialties such as neurology, internal medicine, surgery, radiology, epidemiology, cardiology, hematology, psychology and rehabilitation. Offering an international forum, it meets the growing need for sophisticated, up-to-date scientific information on clinical data, diagnostic testing, and therapeutic issues. The journal publishes original contributions, reviews of selected topics as well as clinical investigative studies. All aspects related to clinical advances are considered, while purely experimental work appears only if directly relevant to clinical issues. Cerebrovascular Diseases Extra provides additional contents based on reviewed and accepted submissions to the main journal Cerebrovascular Diseases.
期刊最新文献
Automated Identification of Stroke Thrombolysis Contraindications from Synthetic Clinical Notes - a Proof-of-Concept Study. Stroke from Infection. Intracerebral Hemorrhage. Safety and Efficacy of Thrombectomy in Vietnamese Stroke Patients Selected through Perfusion Imaging with an Onset Time between 6 and 24 Hours. Intra-Individual Reproducibility of Early and Late C-Reactive Protein and Interleukin-6 in Patients with Non-Severe Ischaemic Stroke and Carotid Atherosclerosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1