Microbial composition on microplastics mediated by stream impairment.

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Environmental Microbiome Pub Date : 2025-03-18 DOI:10.1186/s40793-025-00685-7
Anne L Gilewski, Saurav Shrestha, Sharon N Kahara, Nikolas M Stasulli
{"title":"Microbial composition on microplastics mediated by stream impairment.","authors":"Anne L Gilewski, Saurav Shrestha, Sharon N Kahara, Nikolas M Stasulli","doi":"10.1186/s40793-025-00685-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Studies into biofilm interactions with microplastic polymers in marine environments are widespread in the literature. Increasing evidence suggests that lotic microplastics are a significant contributor and may accumulate harmful or pathogenic organisms, thereby contributing to the degradation of marine ecosystems where they meet riverine systems. Suboptimal water quality of these riverine systems may influence these biomes. This project compared the microbial diversity of biofilms that developed on microplastics to natural stone substrates in an impaired and unimpaired section of the Quinnipiac River Watershed. In this project, the influence of impairment was studied based on microbial diversity via 16S rRNA gene sequencing while monitoring total colony and fecal coliform colony counts using standard water sampling methods.</p><p><strong>Results: </strong>Total coliform colony counts were greater in the impaired Quinnipiac River site than in the unimpaired Honeypot Brook tributary and on the microplastic substrate than the stone substrate. Sequenced features to the class level were dominated by Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, comprising 75% of the community biome. Simpson's Diversity indices indicated that within the two substrates, there was little variation between the communities. However, it was noted that microplastic alpha diversity trended slightly lower than the stone. Further analysis of common aquatic enteropathogens showed that the genus Citrobacter was significantly more abundant on the microplastics at both locations.</p><p><strong>Conclusions: </strong>Our results indicate impaired waterbodies with a microplastic burden may retain greater fecal coliform bacterial loads than unimpaired waterbodies. Increased microplastic loads in compromised lotic systems may have an additive impact. Water quality remediation and careful monitoring are recommended to reduce this effect. Comparing this study with environmental community analysis could provide valuable insight into preferential surface attachment of bacteria onto microplastic.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"20 1","pages":"32"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-025-00685-7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Studies into biofilm interactions with microplastic polymers in marine environments are widespread in the literature. Increasing evidence suggests that lotic microplastics are a significant contributor and may accumulate harmful or pathogenic organisms, thereby contributing to the degradation of marine ecosystems where they meet riverine systems. Suboptimal water quality of these riverine systems may influence these biomes. This project compared the microbial diversity of biofilms that developed on microplastics to natural stone substrates in an impaired and unimpaired section of the Quinnipiac River Watershed. In this project, the influence of impairment was studied based on microbial diversity via 16S rRNA gene sequencing while monitoring total colony and fecal coliform colony counts using standard water sampling methods.

Results: Total coliform colony counts were greater in the impaired Quinnipiac River site than in the unimpaired Honeypot Brook tributary and on the microplastic substrate than the stone substrate. Sequenced features to the class level were dominated by Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, comprising 75% of the community biome. Simpson's Diversity indices indicated that within the two substrates, there was little variation between the communities. However, it was noted that microplastic alpha diversity trended slightly lower than the stone. Further analysis of common aquatic enteropathogens showed that the genus Citrobacter was significantly more abundant on the microplastics at both locations.

Conclusions: Our results indicate impaired waterbodies with a microplastic burden may retain greater fecal coliform bacterial loads than unimpaired waterbodies. Increased microplastic loads in compromised lotic systems may have an additive impact. Water quality remediation and careful monitoring are recommended to reduce this effect. Comparing this study with environmental community analysis could provide valuable insight into preferential surface attachment of bacteria onto microplastic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
期刊最新文献
Microbial composition on microplastics mediated by stream impairment. Microbial transcriptome patterns highlight increased pedogenesis-related activity in arid soils under simulated humid conditions. Diversity and functional features of the root-associated bacteriome are dependent on grapevine susceptibility to Plasmopara viticola. Ironing out the conflicts: iron supplementation reduces negatives bacterial interactions in the rhizosphere of an Atacama-endemic perennial grass. Alternative stable states of microbiome structure and soil ecosystem functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1