Microbial transcriptome patterns highlight increased pedogenesis-related activity in arid soils under simulated humid conditions.

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Environmental Microbiome Pub Date : 2025-03-17 DOI:10.1186/s40793-025-00689-3
Victoria Rodríguez, Alexander Bartholomäus, Susanne Liebner, Romulo Oses, Thomas Scholten, Dirk Wagner
{"title":"Microbial transcriptome patterns highlight increased pedogenesis-related activity in arid soils under simulated humid conditions.","authors":"Victoria Rodríguez, Alexander Bartholomäus, Susanne Liebner, Romulo Oses, Thomas Scholten, Dirk Wagner","doi":"10.1186/s40793-025-00689-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In arid and semiarid environments, microbial activity is restricted by low water availability and high evapotranspiration rates, and soil development is limited. Under humid conditions, such limitations can be overcome, accelerating pedogenesis by microbial processes. Our study aims to broaden our understanding of soil development under a climate change scenario toward humid conditions and to identify the microorganisms that help transform initial soils from arid and semiarid sites. We characterized pedogenetic microbial processes and how their gene expression differs between soils from arid and semiarid sites under a sixteen-week climate simulation experiment using metagenomic and metatranscriptomic approaches.</p><p><strong>Results: </strong>We found that an intense functional response is triggered under humid climate conditions in the arid site compared to the semiarid site, which showed greater resilience. The arid site undergoes higher transcription of genes involved in soil aggregate formation, phosphorus metabolism, and weathering, potentially adapting the development of arid sites to climate change. Additionally, a transcriptional reconfiguration linked to soil carbon and nitrogen dynamics suggests that soil microorganisms use available organic resources alongside autotrophy in response to increased moisture. Pseudomonadota and Actinomycetota dominated the overall transcriptional profile and specific functions associated with the early stages of soil development in both sites.</p><p><strong>Conclusions: </strong>Our findings highlight the rapid activation of pathways related to pedogenesis under humid conditions in arid sites, potentially driven by their metabolic requirements and environmental stressors, influencing soil development dynamics under global climate change.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"20 1","pages":"31"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-025-00689-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In arid and semiarid environments, microbial activity is restricted by low water availability and high evapotranspiration rates, and soil development is limited. Under humid conditions, such limitations can be overcome, accelerating pedogenesis by microbial processes. Our study aims to broaden our understanding of soil development under a climate change scenario toward humid conditions and to identify the microorganisms that help transform initial soils from arid and semiarid sites. We characterized pedogenetic microbial processes and how their gene expression differs between soils from arid and semiarid sites under a sixteen-week climate simulation experiment using metagenomic and metatranscriptomic approaches.

Results: We found that an intense functional response is triggered under humid climate conditions in the arid site compared to the semiarid site, which showed greater resilience. The arid site undergoes higher transcription of genes involved in soil aggregate formation, phosphorus metabolism, and weathering, potentially adapting the development of arid sites to climate change. Additionally, a transcriptional reconfiguration linked to soil carbon and nitrogen dynamics suggests that soil microorganisms use available organic resources alongside autotrophy in response to increased moisture. Pseudomonadota and Actinomycetota dominated the overall transcriptional profile and specific functions associated with the early stages of soil development in both sites.

Conclusions: Our findings highlight the rapid activation of pathways related to pedogenesis under humid conditions in arid sites, potentially driven by their metabolic requirements and environmental stressors, influencing soil development dynamics under global climate change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
期刊最新文献
Microbial composition on microplastics mediated by stream impairment. Microbial transcriptome patterns highlight increased pedogenesis-related activity in arid soils under simulated humid conditions. Diversity and functional features of the root-associated bacteriome are dependent on grapevine susceptibility to Plasmopara viticola. Ironing out the conflicts: iron supplementation reduces negatives bacterial interactions in the rhizosphere of an Atacama-endemic perennial grass. Alternative stable states of microbiome structure and soil ecosystem functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1