Multimodal model for knee osteoarthritis KL grading from plain radiograph.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Journal of X-Ray Science and Technology Pub Date : 2025-03-17 DOI:10.1177/08953996251314765
Mohammad Khaleel Sallam Ma'aitah, Abdulkader Helwan, Abdelrahman Radwan, Adnan Mohammad Salem Manasreh, Esam Alsadiq Alshareef
{"title":"Multimodal model for knee osteoarthritis KL grading from plain radiograph.","authors":"Mohammad Khaleel Sallam Ma'aitah, Abdulkader Helwan, Abdelrahman Radwan, Adnan Mohammad Salem Manasreh, Esam Alsadiq Alshareef","doi":"10.1177/08953996251314765","DOIUrl":null,"url":null,"abstract":"<p><p>Knee osteoarthritis presents a significant health challenge for many adults globally. At present, there are no pharmacological treatments that can cure this medical condition. The primary method for managing the progress of knee osteoarthritis is through early identification. Currently, X-ray imaging serves as a key modality for predicting the onset of osteoarthritis. Nevertheless, the traditional manual interpretation of X-rays is susceptible to inaccuracies, largely due to the varying levels of expertise among radiologists. In this paper, we propose a multimodal model based on pre-trained vision and language models for the identification of the knee osteoarthritis severity Kellgren-Lawrence (KL) grading. Using Vision transformer and Pre-training of deep bidirectional transformers for language understanding (BERT) for images and texts embeddings extraction helps Transformer encoders extracts more distinctive hidden-states that facilitates the learning process of the neural network classifier. The multimodal model was trained and tested on the OAI dataset, and the results showed remarkable performance compared to the related works. Experimentally, the evaluation of the model on the test set comprising X-ray images demonstrated an overall accuracy of 82.85%, alongside a precision of 84.54% and a recall of 82.89%.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251314765"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251314765","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Knee osteoarthritis presents a significant health challenge for many adults globally. At present, there are no pharmacological treatments that can cure this medical condition. The primary method for managing the progress of knee osteoarthritis is through early identification. Currently, X-ray imaging serves as a key modality for predicting the onset of osteoarthritis. Nevertheless, the traditional manual interpretation of X-rays is susceptible to inaccuracies, largely due to the varying levels of expertise among radiologists. In this paper, we propose a multimodal model based on pre-trained vision and language models for the identification of the knee osteoarthritis severity Kellgren-Lawrence (KL) grading. Using Vision transformer and Pre-training of deep bidirectional transformers for language understanding (BERT) for images and texts embeddings extraction helps Transformer encoders extracts more distinctive hidden-states that facilitates the learning process of the neural network classifier. The multimodal model was trained and tested on the OAI dataset, and the results showed remarkable performance compared to the related works. Experimentally, the evaluation of the model on the test set comprising X-ray images demonstrated an overall accuracy of 82.85%, alongside a precision of 84.54% and a recall of 82.89%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
期刊最新文献
Cpi-awHOTV: A CAD prior improved adaptive-weighted high order TV algorithm for orthogonal translation CL. Multi-limited-angle spectral CT image reconstruction based on average image induced relative total variation model. Multimodal model for knee osteoarthritis KL grading from plain radiograph. Feasibility exploration of myocardial blood flow synthesis from a simulated static myocardial computed tomography perfusion via a deep neural network. KBA-PDNet: A primal-dual unrolling network with kernel basis attention for low-dose CT reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1