H2GnnDTI: hierarchical heterogeneous graph neural networks for drug target interaction prediction.

Yueying Jing, Dongxue Zhang, Limin Li
{"title":"H2GnnDTI: hierarchical heterogeneous graph neural networks for drug target interaction prediction.","authors":"Yueying Jing, Dongxue Zhang, Limin Li","doi":"10.1093/bioinformatics/btaf117","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Identifying drug target interactions is a crucial step in drug repurposing and drug discovery. The significant increase in demand and the expensive nature for experimentally identifying drug target interactions necessitate computational tools for automated prediction and comprehension of drug target interactions. Despite recent advancements, current methods fail to fully leverage the hierarchical information in drug target interactions.</p><p><strong>Results: </strong>Here we introduce H2GnnDTI, a novel two-level hierarchical heterogeneous graph learning model to predict drug target interactions, by integrating the structures of drugs and proteins via a low-level view GNN (LGNN) and a high-level view GNN (HGNN). The hierarchical graph consists of high-level heterogeneous nodes representing drugs and proteins, connected by edges representing known DTIs. Each drug or protein node is further detailed in a low-level graph, where nodes represent molecules within each drug or amino acids within each protein, accompanied by their respective chemical descriptors. Two distinct low-level graph neural networks are first deployed to capture structural and chemical features specific to drugs and proteins from these low-level graphs. Subsequently, a high-level graph encoder is employed to comprehensively capture and merge interactive features pertaining to drugs and proteins from the high-level graph. The high-level encoder incorporates a structure and attribute information fusion module designed to explicitly integrate representations acquired from both a feature encoder and a graph encoder, facilitating consensus representation learning. Extensive experiments conducted on three benchmark datasets have shown that our proposed H2GnnDTI model consistently outperforms state-of-the-art deep learning methods.</p><p><strong>Availability and implementation: </strong>The codes are freely available at https://github.com/LiminLi-xjtu/H2GnnDTI.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Identifying drug target interactions is a crucial step in drug repurposing and drug discovery. The significant increase in demand and the expensive nature for experimentally identifying drug target interactions necessitate computational tools for automated prediction and comprehension of drug target interactions. Despite recent advancements, current methods fail to fully leverage the hierarchical information in drug target interactions.

Results: Here we introduce H2GnnDTI, a novel two-level hierarchical heterogeneous graph learning model to predict drug target interactions, by integrating the structures of drugs and proteins via a low-level view GNN (LGNN) and a high-level view GNN (HGNN). The hierarchical graph consists of high-level heterogeneous nodes representing drugs and proteins, connected by edges representing known DTIs. Each drug or protein node is further detailed in a low-level graph, where nodes represent molecules within each drug or amino acids within each protein, accompanied by their respective chemical descriptors. Two distinct low-level graph neural networks are first deployed to capture structural and chemical features specific to drugs and proteins from these low-level graphs. Subsequently, a high-level graph encoder is employed to comprehensively capture and merge interactive features pertaining to drugs and proteins from the high-level graph. The high-level encoder incorporates a structure and attribute information fusion module designed to explicitly integrate representations acquired from both a feature encoder and a graph encoder, facilitating consensus representation learning. Extensive experiments conducted on three benchmark datasets have shown that our proposed H2GnnDTI model consistently outperforms state-of-the-art deep learning methods.

Availability and implementation: The codes are freely available at https://github.com/LiminLi-xjtu/H2GnnDTI.

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MAFin: Motif Detection in Multiple Alignment Files. A Framework for Analyzing EEG Data Using High-Dimensional Tests. Generating Multiple Alignments on a Pangenomic Scale. H2GnnDTI: hierarchical heterogeneous graph neural networks for drug target interaction prediction. Lit-OTAR Framework for Extracting Biological Evidences from Literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1