VisionMol: A Novel Virtual Reality Tool for Protein Molecular Structure Visualization and Manipulation.

Xin Wang, Yicheng Zhuang, Wenrui Liang, Haoyang Wen, Zhencong Cai, Yujia He, Yuxi Su, Wei Qin, Yuanzhe Cai, Lixin Liang, Bingding Huang
{"title":"VisionMol: A Novel Virtual Reality Tool for Protein Molecular Structure Visualization and Manipulation.","authors":"Xin Wang, Yicheng Zhuang, Wenrui Liang, Haoyang Wen, Zhencong Cai, Yujia He, Yuxi Su, Wei Qin, Yuanzhe Cai, Lixin Liang, Bingding Huang","doi":"10.1093/bioinformatics/btaf118","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Virtual reality technology holds significant potential for applications in biomedicine, particularly in the visualization and manipulation of protein molecular structures. To facilitate the study of protein molecules and enable the state-of-the-art VR hardware, we developed a novel VR software named VisionMol, which allows users to engage in immersive exploration and analysis of three-dimensional molecular structures using a range of virtual reality platforms (such as Rhino X Pro, Meta's Oculus Quest Pro/3) as well as personal computers.</p><p><strong>Results: </strong>Built on the Unity engine and programmed using C#, VisionMol incorporates custom scripts to enable a variety of molecular operations. Users can rotate, scale, and translate molecular models using gestures, controllers, or other input devices. Furthermore, VisionMol offers rich visualization and interactive features, including multi-model molecular display, distance measurement between molecular components, and molecular alignment and docking.</p><p><strong>Summary: </strong>These capabilities facilitate a more intuitive understanding of molecular interactions and chemical properties. The real-time interactive effects and clear visual representations allow users to delve deeper into the relationships between molecular structures and their properties, thereby accelerating research progress and promoting scientific discovery. We believe that this VR-based protein molecule analysis has significant application value in several fields, including biomedicine, life science education, drug design and optimization, biotechnology, and engineering applications.</p><p><strong>Availability: </strong>The code is at https://github.com/WangLabforComputationalBiology/VisionMol. The v1.1 code (for Oculus Quest) could also be found at https://doi.org/10.5281/zenodo.14705790. The v1.0 code (for Rhino X Pro) could also be found at https://doi.org/10.5281/zenodo.14865216. Detailed documentation could be found at https://visionmol.surge.sh/#/en-us/README.</p><p><strong>Supplementary information: </strong>Supplementary are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Virtual reality technology holds significant potential for applications in biomedicine, particularly in the visualization and manipulation of protein molecular structures. To facilitate the study of protein molecules and enable the state-of-the-art VR hardware, we developed a novel VR software named VisionMol, which allows users to engage in immersive exploration and analysis of three-dimensional molecular structures using a range of virtual reality platforms (such as Rhino X Pro, Meta's Oculus Quest Pro/3) as well as personal computers.

Results: Built on the Unity engine and programmed using C#, VisionMol incorporates custom scripts to enable a variety of molecular operations. Users can rotate, scale, and translate molecular models using gestures, controllers, or other input devices. Furthermore, VisionMol offers rich visualization and interactive features, including multi-model molecular display, distance measurement between molecular components, and molecular alignment and docking.

Summary: These capabilities facilitate a more intuitive understanding of molecular interactions and chemical properties. The real-time interactive effects and clear visual representations allow users to delve deeper into the relationships between molecular structures and their properties, thereby accelerating research progress and promoting scientific discovery. We believe that this VR-based protein molecule analysis has significant application value in several fields, including biomedicine, life science education, drug design and optimization, biotechnology, and engineering applications.

Availability: The code is at https://github.com/WangLabforComputationalBiology/VisionMol. The v1.1 code (for Oculus Quest) could also be found at https://doi.org/10.5281/zenodo.14705790. The v1.0 code (for Rhino X Pro) could also be found at https://doi.org/10.5281/zenodo.14865216. Detailed documentation could be found at https://visionmol.surge.sh/#/en-us/README.

Supplementary information: Supplementary are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CaLMPhosKAN: Prediction of General Phosphorylation Sites in Proteins via Fusion of Codon Aware Embeddings with Amino Acid Aware Embeddings and Wavelet-based Kolmogorov-Arnold Network. Exact model-free function inference using uniform marginal counts for null population. NanoASV: a snakemake workflow for reproducible field-based Nanopore full length 16S Metabarcoding amplicon data analysis. MAFin: Motif Detection in Multiple Alignment Files. A Framework for Analyzing EEG Data Using High-Dimensional Tests.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1