Molecular evolution of gustatory receptors in the Anopheles gambiae complex.

IF 2.3 Q2 ECOLOGY BMC ecology and evolution Pub Date : 2025-03-17 DOI:10.1186/s12862-025-02359-x
Zachary R Popkin-Hall, Michel A Slotman
{"title":"Molecular evolution of gustatory receptors in the Anopheles gambiae complex.","authors":"Zachary R Popkin-Hall, Michel A Slotman","doi":"10.1186/s12862-025-02359-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mosquitoes in the Anopheles (An.) gambiae species complex are major vectors of Plasmodium falciparum malaria. One reason for this is the high anthropophily of the constituent species An. coluzzii, An. gambiae sensu stricto, and An. arabiensis. In contrast, their sister species An. quadriannulatus is highly zoophilic. Anopheles mosquitoes largely rely on chemical cues for host-seeking, which are primarily detected by four chemosensory gene families: olfactory receptors (Ors), ionotropic receptors (Irs), gustatory receptors (Grs), and odorant binding proteins (Obps). Genes from these families that have been implicated in host adaptation show evidence of positive selection in other insect species, including other mosquitoes. As such, we analyzed the molecular evolutionary patterns of the gustatory receptors within the Anopheles gambiae complex, with a particular interest in identifying Grs that show evidence of positive selection in highly anthropophilic species.</p><p><strong>Results: </strong>We identified sixteen Grs that show evidence of potential positive selection using the McDonald-Kreitman test, including four putative sugar receptors and two Grs with unknown ligands that are relatively highly expressed in chemosensory organs of either An. coluzzii or An. quadriannulatus. In addition, we identified twelve Grs that show evidence of potential purifying selection using the McDonald-Kreitman test, and twelve Grs that may have experienced a selective sweep using the DH test, including three putative sugar receptors and the carbon dioxide receptor Gr24. We also identified both positive and purifying selection in the coastal species An. melas (West Africa) and An. merus (East Africa).</p><p><strong>Conclusions: </strong>Our results, together with transcriptomic data, identify four Grs as possible candidates for involvement in the evolution of vertebrate host preference in the An. gambiae complex, as may have occurred in the An. farauti complex. They also point to sugar receptors as playing a role in recent adaptation of some of these species. As the vast majority of Grs have unknown functions and much is still unknown about the role of Grs in these species, a more complete interpretation of our data necessitates further characterization of these genes.</p>","PeriodicalId":93910,"journal":{"name":"BMC ecology and evolution","volume":"25 1","pages":"22"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC ecology and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-025-02359-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mosquitoes in the Anopheles (An.) gambiae species complex are major vectors of Plasmodium falciparum malaria. One reason for this is the high anthropophily of the constituent species An. coluzzii, An. gambiae sensu stricto, and An. arabiensis. In contrast, their sister species An. quadriannulatus is highly zoophilic. Anopheles mosquitoes largely rely on chemical cues for host-seeking, which are primarily detected by four chemosensory gene families: olfactory receptors (Ors), ionotropic receptors (Irs), gustatory receptors (Grs), and odorant binding proteins (Obps). Genes from these families that have been implicated in host adaptation show evidence of positive selection in other insect species, including other mosquitoes. As such, we analyzed the molecular evolutionary patterns of the gustatory receptors within the Anopheles gambiae complex, with a particular interest in identifying Grs that show evidence of positive selection in highly anthropophilic species.

Results: We identified sixteen Grs that show evidence of potential positive selection using the McDonald-Kreitman test, including four putative sugar receptors and two Grs with unknown ligands that are relatively highly expressed in chemosensory organs of either An. coluzzii or An. quadriannulatus. In addition, we identified twelve Grs that show evidence of potential purifying selection using the McDonald-Kreitman test, and twelve Grs that may have experienced a selective sweep using the DH test, including three putative sugar receptors and the carbon dioxide receptor Gr24. We also identified both positive and purifying selection in the coastal species An. melas (West Africa) and An. merus (East Africa).

Conclusions: Our results, together with transcriptomic data, identify four Grs as possible candidates for involvement in the evolution of vertebrate host preference in the An. gambiae complex, as may have occurred in the An. farauti complex. They also point to sugar receptors as playing a role in recent adaptation of some of these species. As the vast majority of Grs have unknown functions and much is still unknown about the role of Grs in these species, a more complete interpretation of our data necessitates further characterization of these genes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Repetitive DNAs and differentiation of the ZZ/ZW sex chromosome system in the combtail fish Belontia hasselti (Perciformes: Osphronemidae). The Latitudinal Biotic Interaction Hypothesis revisited: contrasting latitudinal richness gradients in actively vs. passively accumulated interaction partners of honey bees. Cryptic diversity, phenotypic congruence, and evolutionary history of the Leptobotia citrauratea complex (Pisces: Botiidae) within subtropical eastern China. Molecular evolution of gustatory receptors in the Anopheles gambiae complex. Mutations in the signal peptide of effector gene Pi04314 contribute to the adaptive evolution of the Phytophthora infestans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1