The ZjMYB44-ZjPOD51 module enhances jujube defence response against phytoplasma by upregulating lignin biosynthesis

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Horticulture Research Pub Date : 2025-03-19 DOI:10.1093/hr/uhaf083
Liman Zhang, Hongtai Li, Ximeng Wei, Yuanyuan Li, Zhiguo Liu, Mengjun Liu, Weijie Huang, Huibin Wang, Jin Zhao
{"title":"The ZjMYB44-ZjPOD51 module enhances jujube defence response against phytoplasma by upregulating lignin biosynthesis","authors":"Liman Zhang, Hongtai Li, Ximeng Wei, Yuanyuan Li, Zhiguo Liu, Mengjun Liu, Weijie Huang, Huibin Wang, Jin Zhao","doi":"10.1093/hr/uhaf083","DOIUrl":null,"url":null,"abstract":"Lignin is a major component of the plant cell wall and has a conserved basic defence function in higher plants, helping the plants cope with pathogen infection. However, the regulatory mechanism of lignin biosynthesis in plants under phytoplasma stress remains unclear. In this study, we reported that peroxidase 51 (ZjPOD51), which is involved in lignin monomer polymerization, was induced by phytoplasma infection and that overexpression of ZjPOD51 in phytoplasma-infected jujube seedlings and Arabidopsis plants significantly increased their defence response against phytoplasma. Yeast one-hybrid (Y1H) and luciferase (LUC) assays showed that ZjPOD51 transcription was directly upregulated by ZjMYB44. Genetic validation demonstrated that ZjMYB44 expression was also induced by phytoplasma infection and contributed to lignin accumulation, which consequently enhanced phytoplasma defence in a ZjPOD51-dependent manner. These results demonstrated that the ZjMYB44-ZjPOD51 module enhanced the jujube defence response against phytoplasma by upregulating lignin biosynthesis. Overall, our study first elucidates how plants regulate lignin to enhance their defence response against phytoplasma and provides clues for jujube resistance breeding.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"16 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf083","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin is a major component of the plant cell wall and has a conserved basic defence function in higher plants, helping the plants cope with pathogen infection. However, the regulatory mechanism of lignin biosynthesis in plants under phytoplasma stress remains unclear. In this study, we reported that peroxidase 51 (ZjPOD51), which is involved in lignin monomer polymerization, was induced by phytoplasma infection and that overexpression of ZjPOD51 in phytoplasma-infected jujube seedlings and Arabidopsis plants significantly increased their defence response against phytoplasma. Yeast one-hybrid (Y1H) and luciferase (LUC) assays showed that ZjPOD51 transcription was directly upregulated by ZjMYB44. Genetic validation demonstrated that ZjMYB44 expression was also induced by phytoplasma infection and contributed to lignin accumulation, which consequently enhanced phytoplasma defence in a ZjPOD51-dependent manner. These results demonstrated that the ZjMYB44-ZjPOD51 module enhanced the jujube defence response against phytoplasma by upregulating lignin biosynthesis. Overall, our study first elucidates how plants regulate lignin to enhance their defence response against phytoplasma and provides clues for jujube resistance breeding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
期刊最新文献
The ZjMYB44-ZjPOD51 module enhances jujube defence response against phytoplasma by upregulating lignin biosynthesis A SlRBP1-SlFBA7/SlGPIMT module regulates fruit size in tomato A Panomics-Driven Framework for the Improvement of Major Food Legume Crops: Advances, Challenges, and Future Prospects BrRCO promotes leaf lobe formation by repressing BrACP5 expression in Brassica rapa Salicylic acid and jasmonic acid in plant immunity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1