Pengcheng Zhang, Xiaohan Yu, Xiao Bai, Jin Zheng, Xin Ning, Edwin R. Hancock
{"title":"Fully Decoupled End-to-End Person Search: An Approach without Conflicting Objectives","authors":"Pengcheng Zhang, Xiaohan Yu, Xiao Bai, Jin Zheng, Xin Ning, Edwin R. Hancock","doi":"10.1007/s11263-025-02407-5","DOIUrl":null,"url":null,"abstract":"<p>End-to-end person search aims to jointly detect and re-identify a target person in raw scene images with a unified model. The detection sub-task learns to identify all persons as one category while the re-identification (re-id) sub-task aims to discriminate persons of different identities, resulting in conflicting optimal objectives. Existing works proposed to decouple end-to-end person search to alleviate such conflict. Yet these methods are still sub-optimal on the sub-tasks due to their partially decoupled models, which limits the overall person search performance. To further eliminate the last coupled part in decoupled models without sacrificing the efficiency of end-to-end person search, we propose a fully decoupled person search framework in this work. Specifically, we design a task-incremental network to construct an end-to-end model in a task-incremental learning procedure. Given that the detection subtask is easier, we start by training a lightweight detection sub-network and expand it with a re-id sub-network trained in another stage. On top of the fully decoupled design, we also enable one-stage training for the task-incremental network. The fully decoupled framework further allows an Online Representation Distillation to mitigate the representation gap between the end-to-end model and two-step models for learning robust representations. Without requiring an offline teacher re-id model, this transfers structured representational knowledge learned from cropped images to the person search model. The learned person representations thus focus more on discriminative clues of foreground persons and suppress the distractive background information. To understand the effectiveness and efficiency of the proposed method, we conduct comprehensive experimental evaluations on two popular person search datasets PRW and CUHK-SYSU. The experimental results demonstrate that the fully decoupled model achieves superior performance than previous decoupled methods. The inference of the model is also shown to be efficient among recent end-to-end methods. The source code is available at https://github.com/PatrickZad/fdps.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"33 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02407-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
End-to-end person search aims to jointly detect and re-identify a target person in raw scene images with a unified model. The detection sub-task learns to identify all persons as one category while the re-identification (re-id) sub-task aims to discriminate persons of different identities, resulting in conflicting optimal objectives. Existing works proposed to decouple end-to-end person search to alleviate such conflict. Yet these methods are still sub-optimal on the sub-tasks due to their partially decoupled models, which limits the overall person search performance. To further eliminate the last coupled part in decoupled models without sacrificing the efficiency of end-to-end person search, we propose a fully decoupled person search framework in this work. Specifically, we design a task-incremental network to construct an end-to-end model in a task-incremental learning procedure. Given that the detection subtask is easier, we start by training a lightweight detection sub-network and expand it with a re-id sub-network trained in another stage. On top of the fully decoupled design, we also enable one-stage training for the task-incremental network. The fully decoupled framework further allows an Online Representation Distillation to mitigate the representation gap between the end-to-end model and two-step models for learning robust representations. Without requiring an offline teacher re-id model, this transfers structured representational knowledge learned from cropped images to the person search model. The learned person representations thus focus more on discriminative clues of foreground persons and suppress the distractive background information. To understand the effectiveness and efficiency of the proposed method, we conduct comprehensive experimental evaluations on two popular person search datasets PRW and CUHK-SYSU. The experimental results demonstrate that the fully decoupled model achieves superior performance than previous decoupled methods. The inference of the model is also shown to be efficient among recent end-to-end methods. The source code is available at https://github.com/PatrickZad/fdps.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.