Impact of administration route and PEGylation on alpha-1 antitrypsin augmentation therapy

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Controlled Release Pub Date : 2025-03-18 DOI:10.1016/j.jconrel.2025.113643
Xiao Liu, Bernard Ucakar, Kevin Vanvarenberg, Etienne Marbaix, Rita Vanbever
{"title":"Impact of administration route and PEGylation on alpha-1 antitrypsin augmentation therapy","authors":"Xiao Liu, Bernard Ucakar, Kevin Vanvarenberg, Etienne Marbaix, Rita Vanbever","doi":"10.1016/j.jconrel.2025.113643","DOIUrl":null,"url":null,"abstract":"Patients suffering from emphysema associated with alpha1 antitrypsin (AAT) deficiency can benefit from augmentation therapy. AAT is administered to the patient once a week by intravenous infusion by a healthcare professional. However, only 2 % of the AAT dose reach the lungs following intravenous infusion. Inhalation of AAT might be a convenient and effective alternative to intravenous infusion. Yet, it has shown limited therapeutic efficacy in a recent clinical trial. Here, we assessed the impact of these routes of AAT administration on AAT pharmacokinetics, lung distribution and therapeutic efficacy in mice. PEGylation of the serpin was employed to improve its therapeutic value. Intravenous injection of AAT or its local administration to the lungs resulted in a similar exposure of the lung parenchyma to AAT with however an AAT dose delivered to the lungs 45-times lower than the injected dose. Conjugation of AAT to a 2-armed 40 kDa polyethylene glycol (PEG) chain prolonged its half-life in plasma and lungs 1.6-times, decreased its penetration in the lung tissue by both routes of administration but did not markedly affect the lung exposure to AAT. The PEG moiety in PEG-AAT was cleared more slowly than the protein moiety and high PEG quantities remained in the lung tissue and alveolar macrophages several days after intratracheal instillation. Pulmonary administration and PEGylation both improved AAT efficacy to prevent lung injury and inflammation in a murine model of chronic obstructive pulmonary disease where lung inflammation was induced by delivering porcine pancreatic elastase and lipopolysaccharide locally to the airways. Anti-AAT and anti-PEG antibodies were generated by AAT and PEG-AAT administration, as expected for a foreign protein. However, anti-PEG antibodies did not significantly contribute to the overall anti-drug antibody titers against the conjugate. AAT and PEG-AAT showed good stability to jet nebulization. This study provides new insights into the impact of administration route and PEGylation on lung exposure, clearance, therapeutic efficacy, and safety of AAT. It highlights that inhalation of AAT might effectively replace its intravenous infusion in augmentation therapy.","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"43 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2025.113643","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Patients suffering from emphysema associated with alpha1 antitrypsin (AAT) deficiency can benefit from augmentation therapy. AAT is administered to the patient once a week by intravenous infusion by a healthcare professional. However, only 2 % of the AAT dose reach the lungs following intravenous infusion. Inhalation of AAT might be a convenient and effective alternative to intravenous infusion. Yet, it has shown limited therapeutic efficacy in a recent clinical trial. Here, we assessed the impact of these routes of AAT administration on AAT pharmacokinetics, lung distribution and therapeutic efficacy in mice. PEGylation of the serpin was employed to improve its therapeutic value. Intravenous injection of AAT or its local administration to the lungs resulted in a similar exposure of the lung parenchyma to AAT with however an AAT dose delivered to the lungs 45-times lower than the injected dose. Conjugation of AAT to a 2-armed 40 kDa polyethylene glycol (PEG) chain prolonged its half-life in plasma and lungs 1.6-times, decreased its penetration in the lung tissue by both routes of administration but did not markedly affect the lung exposure to AAT. The PEG moiety in PEG-AAT was cleared more slowly than the protein moiety and high PEG quantities remained in the lung tissue and alveolar macrophages several days after intratracheal instillation. Pulmonary administration and PEGylation both improved AAT efficacy to prevent lung injury and inflammation in a murine model of chronic obstructive pulmonary disease where lung inflammation was induced by delivering porcine pancreatic elastase and lipopolysaccharide locally to the airways. Anti-AAT and anti-PEG antibodies were generated by AAT and PEG-AAT administration, as expected for a foreign protein. However, anti-PEG antibodies did not significantly contribute to the overall anti-drug antibody titers against the conjugate. AAT and PEG-AAT showed good stability to jet nebulization. This study provides new insights into the impact of administration route and PEGylation on lung exposure, clearance, therapeutic efficacy, and safety of AAT. It highlights that inhalation of AAT might effectively replace its intravenous infusion in augmentation therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
期刊最新文献
Lipid nanoparticle (LNP) mediated mRNA delivery in neurodegenerative diseases “Shear force-affinity” double-triggered fixed-point cutting nanoplatform for precise atherosclerosis treatment Robust micelles formulation to improve systemic corticosteroid therapy in sepsis in multiple healthcare systems Overcoming P-glycoprotein-mediated multidrug resistance in cancer cells through micelle-forming PHPMA-b-PPO diblock copolymers for doxorubicin delivery Impact of administration route and PEGylation on alpha-1 antitrypsin augmentation therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1