Growth Rate of Self-Sustained QED Cascades Induced by Intense Lasers

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2025-03-18 DOI:10.1103/physrevx.15.011062
A. Mercuri-Baron, A. A. Mironov, C. Riconda, A. Grassi, M. Grech
{"title":"Growth Rate of Self-Sustained QED Cascades Induced by Intense Lasers","authors":"A. Mercuri-Baron, A. A. Mironov, C. Riconda, A. Grassi, M. Grech","doi":"10.1103/physrevx.15.011062","DOIUrl":null,"url":null,"abstract":"It was suggested [] that an avalanche of electron-positron pairs can be triggered in the laboratory by a standing wave generated by intense laser fields. Here, we present a general solution to the long-standing problem of the avalanche growth rate calculation. We provide a simple formula that accounts for the damping of the growth rate due to pair and photon migration from the region of prolific generation. We apply our model to a variety of 3D field configurations including focused laser beams and show that (i) the particle yield for the full range of intensity able to generate an avalanche can be predicted, (ii) a critical intensity threshold due to migration is identified, and (iii) the effect of migration is negligible at a higher intensity and the local growth rate dominates. Excellent agreement with Monte Carlo and self-consistent particle-in-cell simulations is shown. The growth rate calculation allows us to predict when abundant pair production will induce a backreaction on the generating field due to plasma collective effects and screening. Our model can be applied to study the generation of electron-positron pair avalanches in realistic fields to plan future experiments at ultrahigh-intensity laser facilities. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"22 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011062","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It was suggested [] that an avalanche of electron-positron pairs can be triggered in the laboratory by a standing wave generated by intense laser fields. Here, we present a general solution to the long-standing problem of the avalanche growth rate calculation. We provide a simple formula that accounts for the damping of the growth rate due to pair and photon migration from the region of prolific generation. We apply our model to a variety of 3D field configurations including focused laser beams and show that (i) the particle yield for the full range of intensity able to generate an avalanche can be predicted, (ii) a critical intensity threshold due to migration is identified, and (iii) the effect of migration is negligible at a higher intensity and the local growth rate dominates. Excellent agreement with Monte Carlo and self-consistent particle-in-cell simulations is shown. The growth rate calculation allows us to predict when abundant pair production will induce a backreaction on the generating field due to plasma collective effects and screening. Our model can be applied to study the generation of electron-positron pair avalanches in realistic fields to plan future experiments at ultrahigh-intensity laser facilities. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
Highly Entangled Stationary States from Strong Symmetries Topology and Nuclear Size Determine Cell Packing on Growing Lung Spheroids Strong Orbital-Lattice Coupling Induces Glassy Thermal Conductivity in High-Symmetry Single Crystal BaTiS3 Network Reconstruction via the Minimum Description Length Principle Theory of Metastable States in Many-Body Quantum Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1