Insights into the synergistic effects of exogenous glycine betaine on the multiphase metabolism of oxyfluorfen in Oryza sativa for reducing environmental risks
Zhao Jie Chen, Xu Zhen Shi, Ya Nan Qu, Si Ying Li, Gan Ai, Yi Zhuo Wang, Li Qing Zeng, Xiao Liang Liu, Xuesheng Li, Yan Hui Wang
{"title":"Insights into the synergistic effects of exogenous glycine betaine on the multiphase metabolism of oxyfluorfen in Oryza sativa for reducing environmental risks","authors":"Zhao Jie Chen, Xu Zhen Shi, Ya Nan Qu, Si Ying Li, Gan Ai, Yi Zhuo Wang, Li Qing Zeng, Xiao Liang Liu, Xuesheng Li, Yan Hui Wang","doi":"10.1016/j.jhazmat.2025.137970","DOIUrl":null,"url":null,"abstract":"Glycine betaine (GB), a secondary metabolite that regulates plant responses to biotic and abiotic stresses, may help reduce pesticide phytotoxicity, but this fact remains unestablished. This study investigated the physiological response of rice (<em>Oryza sativa</em>) to six dosages of oxyfluorfen (OFF) (0–0.25<!-- --> <!-- -->mg/L) and two concentrations of GB (0 and 175<!-- --> <!-- -->mg/L). GB treatment counteracted the considerable decrease in rice seedling growth caused by OFF treatment at doses higher than 0.15<!-- --> <!-- -->mg/L. The biochemical processes and catalytic events associated with OFF-triggered degradation in rice were investigated using RNA-Seq–LC–Q-TOF–HRMS/MS after six rice root and shoot libraries were created and subjected to either OFF or OFF–GB. Rice treated with both GB and an ecologically relevant dose of OFF showed a marked upregulation of 1039 root genes and 111 shoot genes compared with those treated with OFF alone. Multiple OFF-degradative enzymes implicated in molecular metabolism and xenobiotic tolerance to environmental stress were identified by gene enrichment analysis. In comparison to treated with 0.25<!-- --> <!-- -->mg/L OFF alone, exogenous GB administration decreased OFF accumulation, with the OFF concentration in roots being 44.47% and in shoots being 51.03%. The production of essential enzymes involved in the OFF decay process was attributed to certain genes with variable expression, including cytochrome P450, methyltransferase, glycosyltransferases, and acetyltransferases. Using LC-Q-TOF-HRMS/MS, 3 metabolites and 16 conjugates were identified in metabolic pathways including hydrolysis, acetylation, glycosylation, and interaction with amino acids in order to enhance OFF-degradative metabolism. All things considered, by reducing phytotoxicity and OFF buildup, external GB treatment can increase rice's resistance to oxidative stress caused by OFF. This study offers valuable insights into the function of GB in enhancing OFF degradation, which may have ramifications for designing genotypes that maximize OFF accumulation in rice crops and promote OFF degradation in paddy crops.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"6 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137970","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glycine betaine (GB), a secondary metabolite that regulates plant responses to biotic and abiotic stresses, may help reduce pesticide phytotoxicity, but this fact remains unestablished. This study investigated the physiological response of rice (Oryza sativa) to six dosages of oxyfluorfen (OFF) (0–0.25 mg/L) and two concentrations of GB (0 and 175 mg/L). GB treatment counteracted the considerable decrease in rice seedling growth caused by OFF treatment at doses higher than 0.15 mg/L. The biochemical processes and catalytic events associated with OFF-triggered degradation in rice were investigated using RNA-Seq–LC–Q-TOF–HRMS/MS after six rice root and shoot libraries were created and subjected to either OFF or OFF–GB. Rice treated with both GB and an ecologically relevant dose of OFF showed a marked upregulation of 1039 root genes and 111 shoot genes compared with those treated with OFF alone. Multiple OFF-degradative enzymes implicated in molecular metabolism and xenobiotic tolerance to environmental stress were identified by gene enrichment analysis. In comparison to treated with 0.25 mg/L OFF alone, exogenous GB administration decreased OFF accumulation, with the OFF concentration in roots being 44.47% and in shoots being 51.03%. The production of essential enzymes involved in the OFF decay process was attributed to certain genes with variable expression, including cytochrome P450, methyltransferase, glycosyltransferases, and acetyltransferases. Using LC-Q-TOF-HRMS/MS, 3 metabolites and 16 conjugates were identified in metabolic pathways including hydrolysis, acetylation, glycosylation, and interaction with amino acids in order to enhance OFF-degradative metabolism. All things considered, by reducing phytotoxicity and OFF buildup, external GB treatment can increase rice's resistance to oxidative stress caused by OFF. This study offers valuable insights into the function of GB in enhancing OFF degradation, which may have ramifications for designing genotypes that maximize OFF accumulation in rice crops and promote OFF degradation in paddy crops.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.