{"title":"Oceanic Ba removal improved marine habitability for the oldest-known animals at ca. 600 Ma","authors":"Peishan Sui, Wei Wei, Shao-Bing Zhang, Yan-Yan Zhao, Fang Huang","doi":"10.1016/j.gloplacha.2025.104790","DOIUrl":null,"url":null,"abstract":"The early Ediacaran witnessed the rise of complex macroscopic eukaryotes in the ecosystem including the naissance of metazoans, which may have been triggered by the Neoproterozoic Oxygenation Event. However, <ce:italic>local</ce:italic> anoxia and/or euxinia likely persisted and dominated in deep waters and restricted environments during this period. Whether and how marine redox changes were related to this evolutionary event remains elusive. In this study, we present Fe speciation, Ba contents, and Ba isotope compositions of black shales from the Lantian Formation on the lower Yangtze Block, which preserved the oldest-known macroscopic fossil assemblage of morphologically differentiated algae and animal affinities. The Fe speciation data show that the Lantian black shales were mainly deposited in ferruginous and euxinic environments. However, the considerable Ba enrichments relative to the upper continental crust suggest that the oceanic sulfate was surplus after the microbial sulfate reduction to remove dissolved Ba from the <ce:italic>locally</ce:italic> ferruginous/euxinic deep seawater as barite. The Ba isotope data reflect a major drawdown of dissolved Ba reservoir by barite precipitation in response to oceanic sulfate increase on a <ce:italic>global</ce:italic> scale. Since high levels of dissolved Ba are deleterious to marine organisms, we propose that the removal of toxic Ba, corresponding to increase in oceanic sulfate concentration (oceanic oxygenation), could have promoted marine habitability for the diversification of macroscopic eukaryotic algae and the appearance of early animals during the early Ediacaran. Additionally, this study demonstrates that the Ba isotope system can serve as a novel tool to estimate <ce:italic>global</ce:italic> oceanic sulfate concentration (oxygenation extent).","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"56 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gloplacha.2025.104790","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The early Ediacaran witnessed the rise of complex macroscopic eukaryotes in the ecosystem including the naissance of metazoans, which may have been triggered by the Neoproterozoic Oxygenation Event. However, local anoxia and/or euxinia likely persisted and dominated in deep waters and restricted environments during this period. Whether and how marine redox changes were related to this evolutionary event remains elusive. In this study, we present Fe speciation, Ba contents, and Ba isotope compositions of black shales from the Lantian Formation on the lower Yangtze Block, which preserved the oldest-known macroscopic fossil assemblage of morphologically differentiated algae and animal affinities. The Fe speciation data show that the Lantian black shales were mainly deposited in ferruginous and euxinic environments. However, the considerable Ba enrichments relative to the upper continental crust suggest that the oceanic sulfate was surplus after the microbial sulfate reduction to remove dissolved Ba from the locally ferruginous/euxinic deep seawater as barite. The Ba isotope data reflect a major drawdown of dissolved Ba reservoir by barite precipitation in response to oceanic sulfate increase on a global scale. Since high levels of dissolved Ba are deleterious to marine organisms, we propose that the removal of toxic Ba, corresponding to increase in oceanic sulfate concentration (oceanic oxygenation), could have promoted marine habitability for the diversification of macroscopic eukaryotic algae and the appearance of early animals during the early Ediacaran. Additionally, this study demonstrates that the Ba isotope system can serve as a novel tool to estimate global oceanic sulfate concentration (oxygenation extent).
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.