Oceanic Ba removal improved marine habitability for the oldest-known animals at ca. 600 Ma

IF 4 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Global and Planetary Change Pub Date : 2025-03-14 DOI:10.1016/j.gloplacha.2025.104790
Peishan Sui, Wei Wei, Shao-Bing Zhang, Yan-Yan Zhao, Fang Huang
{"title":"Oceanic Ba removal improved marine habitability for the oldest-known animals at ca. 600 Ma","authors":"Peishan Sui, Wei Wei, Shao-Bing Zhang, Yan-Yan Zhao, Fang Huang","doi":"10.1016/j.gloplacha.2025.104790","DOIUrl":null,"url":null,"abstract":"The early Ediacaran witnessed the rise of complex macroscopic eukaryotes in the ecosystem including the naissance of metazoans, which may have been triggered by the Neoproterozoic Oxygenation Event. However, <ce:italic>local</ce:italic> anoxia and/or euxinia likely persisted and dominated in deep waters and restricted environments during this period. Whether and how marine redox changes were related to this evolutionary event remains elusive. In this study, we present Fe speciation, Ba contents, and Ba isotope compositions of black shales from the Lantian Formation on the lower Yangtze Block, which preserved the oldest-known macroscopic fossil assemblage of morphologically differentiated algae and animal affinities. The Fe speciation data show that the Lantian black shales were mainly deposited in ferruginous and euxinic environments. However, the considerable Ba enrichments relative to the upper continental crust suggest that the oceanic sulfate was surplus after the microbial sulfate reduction to remove dissolved Ba from the <ce:italic>locally</ce:italic> ferruginous/euxinic deep seawater as barite. The Ba isotope data reflect a major drawdown of dissolved Ba reservoir by barite precipitation in response to oceanic sulfate increase on a <ce:italic>global</ce:italic> scale. Since high levels of dissolved Ba are deleterious to marine organisms, we propose that the removal of toxic Ba, corresponding to increase in oceanic sulfate concentration (oceanic oxygenation), could have promoted marine habitability for the diversification of macroscopic eukaryotic algae and the appearance of early animals during the early Ediacaran. Additionally, this study demonstrates that the Ba isotope system can serve as a novel tool to estimate <ce:italic>global</ce:italic> oceanic sulfate concentration (oxygenation extent).","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"56 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gloplacha.2025.104790","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The early Ediacaran witnessed the rise of complex macroscopic eukaryotes in the ecosystem including the naissance of metazoans, which may have been triggered by the Neoproterozoic Oxygenation Event. However, local anoxia and/or euxinia likely persisted and dominated in deep waters and restricted environments during this period. Whether and how marine redox changes were related to this evolutionary event remains elusive. In this study, we present Fe speciation, Ba contents, and Ba isotope compositions of black shales from the Lantian Formation on the lower Yangtze Block, which preserved the oldest-known macroscopic fossil assemblage of morphologically differentiated algae and animal affinities. The Fe speciation data show that the Lantian black shales were mainly deposited in ferruginous and euxinic environments. However, the considerable Ba enrichments relative to the upper continental crust suggest that the oceanic sulfate was surplus after the microbial sulfate reduction to remove dissolved Ba from the locally ferruginous/euxinic deep seawater as barite. The Ba isotope data reflect a major drawdown of dissolved Ba reservoir by barite precipitation in response to oceanic sulfate increase on a global scale. Since high levels of dissolved Ba are deleterious to marine organisms, we propose that the removal of toxic Ba, corresponding to increase in oceanic sulfate concentration (oceanic oxygenation), could have promoted marine habitability for the diversification of macroscopic eukaryotic algae and the appearance of early animals during the early Ediacaran. Additionally, this study demonstrates that the Ba isotope system can serve as a novel tool to estimate global oceanic sulfate concentration (oxygenation extent).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global and Planetary Change
Global and Planetary Change 地学天文-地球科学综合
CiteScore
7.40
自引率
10.30%
发文量
226
审稿时长
63 days
期刊介绍: The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems. Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged. Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.
期刊最新文献
Sea-level fingerprinting technique: A window into meltwater pulse 1 A and constraints from Antarctica Oceanic Ba removal improved marine habitability for the oldest-known animals at ca. 600 Ma Exploring Neoproterozoic climate and biogeochemical evolution in the SCION model Monsoon variability and high latitude climate signals in the central Mediterranean at the Pliocene – Pleistocene transition: the Gelasian stratotype section (Monte San Nicola, Sicily) Environmental conditions controlling cold-water coral growth in the southern Alboran Sea since the last deglaciation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1