Comparative analysis of Eulerian and Lagrangian models for the simulation of fine and ultrafine particle dynamics in the wake of a heavy truck

IF 3.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL Journal of Aerosol Science Pub Date : 2025-03-15 DOI:10.1016/j.jaerosci.2025.106568
Mokhtar Djeddou , Aude Pérard-Lecomte , Georges Fokoua , Amine Mehel , Anne Tanière
{"title":"Comparative analysis of Eulerian and Lagrangian models for the simulation of fine and ultrafine particle dynamics in the wake of a heavy truck","authors":"Mokhtar Djeddou ,&nbsp;Aude Pérard-Lecomte ,&nbsp;Georges Fokoua ,&nbsp;Amine Mehel ,&nbsp;Anne Tanière","doi":"10.1016/j.jaerosci.2025.106568","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting the turbulent dispersion of particulate pollutants is essential for understanding and mitigating the environmental impact of road traffic emissions, particularly those from heavy vehicles. This study examines the behavior of low-inertia particles in the turbulent wake of a heavy truck, a region dominated by complex and inhomogeneous airflow that significantly influences pollutant dynamics. Numerical simulations were performed based on the RANS-SST <span><math><mrow><mi>k</mi><mi>ω</mi></mrow></math></span> model for carrier-phase flow characterization, and three different approaches were applied to model the dispersed phase, namely the Lagrangian eddy interaction model (EIM), the Eulerian diffusion-inertia model (DIM) and a scalar advection–diffusion equation. To assess the accuracy of these numerical models, experimental measurements were carried out in an open-circuit wind tunnel. Particle image velocimetry (PIV) was used to characterize airflow, while a low-pressure electric impactor (ELPI) measured particle concentrations.</div><div>While numerical simulations generally aligned with experimental data, the Lagrangian EIM model overestimated particle concentrations at the wake vortex periphery, highlighting some limitations in capturing particle-turbulence interactions in highly anisotropic and inhomogeneous flows. Conversely, the Eulerian DIM and scalar advection–diffusion models proved closer to the experimental results, reasonably reproducing low-inertia particle dispersion, where inertial effects were found to be negligible. These results underline the importance of selecting an appropriate combination of turbulence and particle models to simulate the dispersion of particulate pollutants, providing valuable information for improving forecasts of traffic-related pollution and its environmental and health impacts.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"186 ","pages":"Article 106568"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002185022500045X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the turbulent dispersion of particulate pollutants is essential for understanding and mitigating the environmental impact of road traffic emissions, particularly those from heavy vehicles. This study examines the behavior of low-inertia particles in the turbulent wake of a heavy truck, a region dominated by complex and inhomogeneous airflow that significantly influences pollutant dynamics. Numerical simulations were performed based on the RANS-SST kω model for carrier-phase flow characterization, and three different approaches were applied to model the dispersed phase, namely the Lagrangian eddy interaction model (EIM), the Eulerian diffusion-inertia model (DIM) and a scalar advection–diffusion equation. To assess the accuracy of these numerical models, experimental measurements were carried out in an open-circuit wind tunnel. Particle image velocimetry (PIV) was used to characterize airflow, while a low-pressure electric impactor (ELPI) measured particle concentrations.
While numerical simulations generally aligned with experimental data, the Lagrangian EIM model overestimated particle concentrations at the wake vortex periphery, highlighting some limitations in capturing particle-turbulence interactions in highly anisotropic and inhomogeneous flows. Conversely, the Eulerian DIM and scalar advection–diffusion models proved closer to the experimental results, reasonably reproducing low-inertia particle dispersion, where inertial effects were found to be negligible. These results underline the importance of selecting an appropriate combination of turbulence and particle models to simulate the dispersion of particulate pollutants, providing valuable information for improving forecasts of traffic-related pollution and its environmental and health impacts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
期刊最新文献
Comparative analysis of Eulerian and Lagrangian models for the simulation of fine and ultrafine particle dynamics in the wake of a heavy truck The collision kernel of nanoparticles in homogeneous isotropic turbulence: Direct simulations and modelling Bipolar coagulation in bipolar electrosprays: Optimizing coagulation efficiency and hetero-agglomerate composition ToF-SIMS analyses of brake wear particles in human epithelial Caco-2 cells Multi-objective Bayesian optimization for the retrieval of aggregated aerosol structures from microscopic images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1