Bárbara Pisoni Bender Andrade , Antonio Carlos Bender Andrade , Daniel Pacheco Lacerda , Fabio Antonio Sartori Piran
{"title":"Solar energy generation in three dimensions: The hexagonal pyramid","authors":"Bárbara Pisoni Bender Andrade , Antonio Carlos Bender Andrade , Daniel Pacheco Lacerda , Fabio Antonio Sartori Piran","doi":"10.1016/j.solener.2025.113408","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic (PV) panels serve as a standard solution for the collection of solar energy. The flat photovoltaic solar plate design has been the most adopted by the market for its ease of installation. However, this design faces limitations due to geometric constraints and the sun’s trajectory through the day. Inspiration was drawn from nature to overcome these limitations by utilizing the tridimensional hexagonal shape observed in honeycomb structures. The used approach aimed to explore a novel design that can reduce the constraints of flat PV panels while maximizing energy output. The unique 3D arrangement of the hexagonal pyramid enables the installation of mirrors inside to ease the reflection of photons and to increase energy production compared to flat panels. Furthermore, this design presents an opportunity to incorporate a water capture and heating system, thereby increasing the system’s overall usage.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"292 ","pages":"Article 113408"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25001719","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Photovoltaic (PV) panels serve as a standard solution for the collection of solar energy. The flat photovoltaic solar plate design has been the most adopted by the market for its ease of installation. However, this design faces limitations due to geometric constraints and the sun’s trajectory through the day. Inspiration was drawn from nature to overcome these limitations by utilizing the tridimensional hexagonal shape observed in honeycomb structures. The used approach aimed to explore a novel design that can reduce the constraints of flat PV panels while maximizing energy output. The unique 3D arrangement of the hexagonal pyramid enables the installation of mirrors inside to ease the reflection of photons and to increase energy production compared to flat panels. Furthermore, this design presents an opportunity to incorporate a water capture and heating system, thereby increasing the system’s overall usage.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass