Experimental study on mixing time and hydrodynamics in mixing element of an air-lift mixer settler

IF 3.3 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Progress in Nuclear Energy Pub Date : 2025-03-19 DOI:10.1016/j.pnucene.2025.105721
Ankit Ojha , Nirvik Sen , K.K. Singh , K. Umadevi , G. Sreekumar
{"title":"Experimental study on mixing time and hydrodynamics in mixing element of an air-lift mixer settler","authors":"Ankit Ojha ,&nbsp;Nirvik Sen ,&nbsp;K.K. Singh ,&nbsp;K. Umadevi ,&nbsp;G. Sreekumar","doi":"10.1016/j.pnucene.2025.105721","DOIUrl":null,"url":null,"abstract":"<div><div>Gas-liquid hydrodynamics and mixing characteristics in batch vessel equipped with mixing element of air-lift solvent extraction contactor (CALMSU) is reported. Photographic technique involving a coloured tracer is used. Mixing dynamics of tracer is tracked using high speed camera in a 5 L glass beaker with mixing element. The resultant video is analysed using three different algorithms for mixing time determination. Measurements are taken at three different axial locations (top, bottom, middle) to ensure throughout mixing. A systematic study on the effects of air flow rate, mixing element submergence, and tracer addition point on mixing time is reported. The mixing time decreases with an increase in air flow rate, reaches a minimum, and then increases. Mixing time is seen to monotonically decrease with increase in submergence of the mixer. Mixing is also dependent on the location of tracer release. Successive experiments were performed to determine effect of air flow rate and submergence on bubble size distribution and estimation of Saunter mean bubble diameter. Bubble size is seen to be rather independent of air flow rate while it decreases with increase in liquid level. Ejection length is also found to be increasing with increase in air flow rate up to a level before plateauing out.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"185 ","pages":"Article 105721"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197025001192","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gas-liquid hydrodynamics and mixing characteristics in batch vessel equipped with mixing element of air-lift solvent extraction contactor (CALMSU) is reported. Photographic technique involving a coloured tracer is used. Mixing dynamics of tracer is tracked using high speed camera in a 5 L glass beaker with mixing element. The resultant video is analysed using three different algorithms for mixing time determination. Measurements are taken at three different axial locations (top, bottom, middle) to ensure throughout mixing. A systematic study on the effects of air flow rate, mixing element submergence, and tracer addition point on mixing time is reported. The mixing time decreases with an increase in air flow rate, reaches a minimum, and then increases. Mixing time is seen to monotonically decrease with increase in submergence of the mixer. Mixing is also dependent on the location of tracer release. Successive experiments were performed to determine effect of air flow rate and submergence on bubble size distribution and estimation of Saunter mean bubble diameter. Bubble size is seen to be rather independent of air flow rate while it decreases with increase in liquid level. Ejection length is also found to be increasing with increase in air flow rate up to a level before plateauing out.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Nuclear Energy
Progress in Nuclear Energy 工程技术-核科学技术
CiteScore
5.30
自引率
14.80%
发文量
331
审稿时长
3.5 months
期刊介绍: Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field. Please note the following: 1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy. 2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc. 3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.
期刊最新文献
Editorial Board Solving neutron transport problems with sharp layers on the Shishkin mesh Experimental study on mixing time and hydrodynamics in mixing element of an air-lift mixer settler Numerical study on the thermal hydraulic effect of flow blockage in liquid metal cooled reactor core rod bundles Experimental analysis of gas dynamics in the reactor cavity section of a High-Temperature Gas-Cooled Reactor during an accident scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1