{"title":"Effective NSGA-II Algorithm for a Limited AGV Scheduling Problem in Matrix Manufacturing Workshops with Undirected Material Flow","authors":"Xuewu Wang;Jianing Zhang;Yi Hua;Rui Yu","doi":"10.23919/CSMS.2024.0023","DOIUrl":null,"url":null,"abstract":"Automatic guided vehicles (AGVs) are extensively employed in manufacturing workshops for their high degree of automation and flexibility. This paper investigates a limited AGV scheduling problem (LAGVSP) in matrix manufacturing workshops with undirected material flow, aiming to minimize both total task delay time and total task completion time. To address this LAGVSP, a mixed-integer linear programming model is built, and a nondominated sorting genetic algorithm II based on dual population co-evolution (NSGA-IIDPC) is proposed. In NSGA-IIDPC, a single population is divided into a common population and an elite population, and they adopt different evolutionary strategies during the evolution process. The dual population co-evolution mechanism is designed to accelerate the convergence of the non-dominated solution set in the population to the Pareto front through information exchange and competition between the two populations. In addition, to enhance the quality of initial population, a minimum cost function strategy based on load balancing is adopted. Multiple local search operators based on ideal point are proposed to find a better local solution. To improve the global exploration ability of the algorithm, a dual population restart mechanism is adopted. Experimental tests and comparisons with other algorithms are conducted to demonstrate the effectiveness of NSGA-IIDPC in solving the LAGVSP.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":"5 1","pages":"68-85"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934760","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/10934760/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic guided vehicles (AGVs) are extensively employed in manufacturing workshops for their high degree of automation and flexibility. This paper investigates a limited AGV scheduling problem (LAGVSP) in matrix manufacturing workshops with undirected material flow, aiming to minimize both total task delay time and total task completion time. To address this LAGVSP, a mixed-integer linear programming model is built, and a nondominated sorting genetic algorithm II based on dual population co-evolution (NSGA-IIDPC) is proposed. In NSGA-IIDPC, a single population is divided into a common population and an elite population, and they adopt different evolutionary strategies during the evolution process. The dual population co-evolution mechanism is designed to accelerate the convergence of the non-dominated solution set in the population to the Pareto front through information exchange and competition between the two populations. In addition, to enhance the quality of initial population, a minimum cost function strategy based on load balancing is adopted. Multiple local search operators based on ideal point are proposed to find a better local solution. To improve the global exploration ability of the algorithm, a dual population restart mechanism is adopted. Experimental tests and comparisons with other algorithms are conducted to demonstrate the effectiveness of NSGA-IIDPC in solving the LAGVSP.