Ultra-performance liquid chromatography method for quantitative analysis of nystatin and triamcinolone acetonide in topical creams after in vitro release using franz diffusion cell
{"title":"Ultra-performance liquid chromatography method for quantitative analysis of nystatin and triamcinolone acetonide in topical creams after in vitro release using franz diffusion cell","authors":"Seelam Jayadev, Ismail Yusuff, Faiyaz Shakeel, Ubaidulla Uthumansha","doi":"10.1186/s13065-025-01446-w","DOIUrl":null,"url":null,"abstract":"<p>The accurate quantification of active ingredients in topical creams is critical for ensuring efficacy, safety, and quality. Therefore, this initiative is to develop and validate a robust ultra-performance liquid chromatography (UPLC) method for the quantification of nystatin (Nys) and triamcinolone acetonide (TA) in topical creams. Validation of the in vitro release test (IVRT) apparatus and UPLC method was conducted according to standard requirements. IVRT apparatus demonstrated exceptional control over key parameters, aligning with stringent standards, thus ensuring consistent and reproducible drug release profiles. Membrane inertness evaluation confirmed no significant binding of Nys and TA. The proposed UPLC method was found to be linear in the range of 0.65–31.93 µg/mL for TA and 17.67-863.27 IU/mL for Nys with determination coefficients of 1.0000 for both drugs, enabling accurate measurement across a wide range of drug concentrations. Recovery rates and mass balance results were within acceptable ranges, validating the method’s accuracy. The IVRT method exhibited low day-1 and day-2 variability, underscoring its reliability. Sensitivity and specificity were comparable to similar studies, demonstrating the method’s applicability in distinguishing between different formulation strengths and variations. The method’s robustness was confirmed by its resistance to variations in dose amount, receptor media composition, stirring speed (stirring speed is controlled by rotation speed controller connected to the vertical diffusion cell Instrument. Material of construction is plastic, plastic bead is connected to the helix spring and placed in the cell for uniform mixing.), and temperature. The UPLC method validation affirmed its high sensitivity and reliability for detecting low levels of active ingredients, with excellent selectivity, specificity, linearity, precision, accuracy, stability, and robustness. The IVRT equipment’s and UPLC analytical method’s thorough certification and validation procedures verify its fit for the precise and dependable measurement of Nys and TA in topical cream compositions. These confirmed techniques satisfy all scientific and legal criteria.</p><p>Not Applicable.</p>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01446-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01446-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate quantification of active ingredients in topical creams is critical for ensuring efficacy, safety, and quality. Therefore, this initiative is to develop and validate a robust ultra-performance liquid chromatography (UPLC) method for the quantification of nystatin (Nys) and triamcinolone acetonide (TA) in topical creams. Validation of the in vitro release test (IVRT) apparatus and UPLC method was conducted according to standard requirements. IVRT apparatus demonstrated exceptional control over key parameters, aligning with stringent standards, thus ensuring consistent and reproducible drug release profiles. Membrane inertness evaluation confirmed no significant binding of Nys and TA. The proposed UPLC method was found to be linear in the range of 0.65–31.93 µg/mL for TA and 17.67-863.27 IU/mL for Nys with determination coefficients of 1.0000 for both drugs, enabling accurate measurement across a wide range of drug concentrations. Recovery rates and mass balance results were within acceptable ranges, validating the method’s accuracy. The IVRT method exhibited low day-1 and day-2 variability, underscoring its reliability. Sensitivity and specificity were comparable to similar studies, demonstrating the method’s applicability in distinguishing between different formulation strengths and variations. The method’s robustness was confirmed by its resistance to variations in dose amount, receptor media composition, stirring speed (stirring speed is controlled by rotation speed controller connected to the vertical diffusion cell Instrument. Material of construction is plastic, plastic bead is connected to the helix spring and placed in the cell for uniform mixing.), and temperature. The UPLC method validation affirmed its high sensitivity and reliability for detecting low levels of active ingredients, with excellent selectivity, specificity, linearity, precision, accuracy, stability, and robustness. The IVRT equipment’s and UPLC analytical method’s thorough certification and validation procedures verify its fit for the precise and dependable measurement of Nys and TA in topical cream compositions. These confirmed techniques satisfy all scientific and legal criteria.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.