Double-Network Hydrogel Based on Methacrylated Chitosan/Hyaluronic Acid Coacervate for Enhanced Wet-Tissue Adhesion.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2025-03-18 DOI:10.1021/acs.biomac.4c01645
Dafeng Deng, Deyi Peng, Jianhua Lv, Wenchang Zhang, Huaqin Tian, Tieqiang Wang, Mi Wu, Yan Zhao
{"title":"Double-Network Hydrogel Based on Methacrylated Chitosan/Hyaluronic Acid Coacervate for Enhanced Wet-Tissue Adhesion.","authors":"Dafeng Deng, Deyi Peng, Jianhua Lv, Wenchang Zhang, Huaqin Tian, Tieqiang Wang, Mi Wu, Yan Zhao","doi":"10.1021/acs.biomac.4c01645","DOIUrl":null,"url":null,"abstract":"<p><p>Developing robust wet tissue adhesives remains challenging due to interfacial water and irregular surfaces. While polyelectrolyte coacervates demonstrate promising hydrophobic/fluidic properties for wet adhesion, their low cohesion limits practical applications. Herein, a wet tissue bioadhesive based on coacervates formed from low- molecular-weight methacrylated chitosan (CSMA) and hyaluronic acid (HA) is reported. These homogeneous and transparent coacervates displayed high solid content (∼18.0%), fluidity (∼10<sup>5</sup> mPa·s), and tunable mechanical properties. Upon application to wet tissue surfaces, the coacervate can be photo-cross-linked to form a double-network hydrogel in situ, resulting in improved cohesion and durable adhesion. The resulting CSMA-HA hydrogel demonstrated robust adhesion to tissues, with a bursting pressure of 374 mmHg. Remarkably, the bursting pressure can be further enhanced (∼623 mmHg) after 24 h of PBS immersion due to dynamic bond reorganization and low swelling. The demonstrated stability under physiological conditions and robust wet adhesion position CSMA-HA coacervates as a transformative platform for tissue adhesive applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01645","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing robust wet tissue adhesives remains challenging due to interfacial water and irregular surfaces. While polyelectrolyte coacervates demonstrate promising hydrophobic/fluidic properties for wet adhesion, their low cohesion limits practical applications. Herein, a wet tissue bioadhesive based on coacervates formed from low- molecular-weight methacrylated chitosan (CSMA) and hyaluronic acid (HA) is reported. These homogeneous and transparent coacervates displayed high solid content (∼18.0%), fluidity (∼105 mPa·s), and tunable mechanical properties. Upon application to wet tissue surfaces, the coacervate can be photo-cross-linked to form a double-network hydrogel in situ, resulting in improved cohesion and durable adhesion. The resulting CSMA-HA hydrogel demonstrated robust adhesion to tissues, with a bursting pressure of 374 mmHg. Remarkably, the bursting pressure can be further enhanced (∼623 mmHg) after 24 h of PBS immersion due to dynamic bond reorganization and low swelling. The demonstrated stability under physiological conditions and robust wet adhesion position CSMA-HA coacervates as a transformative platform for tissue adhesive applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Fabricating N-Cadherin Mimetic Peptide-Based Diverse Self-Assembled Hydrogels in the Presence of Biologically Relevant Cations. An Antibacterial Hydrogel Based on Silk Sericin Cross-Linking Glycyrrhizic Acid and Silver for Infectious Wound Healing. Double-Network Hydrogel Based on Methacrylated Chitosan/Hyaluronic Acid Coacervate for Enhanced Wet-Tissue Adhesion. The Role and Future of Functional Graphenic Materials in Biomedical and Human Health Applications. Analysis of HSA-PAA Complexation Using SEC-SAXS Combination: Unraveling Stoichiometry, Reversibility, and Interaction Specificity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1