{"title":"Molecular detection of novel Glutamate-gated chloride channel mutations in field collected human head lice (Phthiraptera: Pediculidae) from Iran.","authors":"Vahid Mansouri, Saber Gholizadeh","doi":"10.1186/s13104-025-07176-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Recently, insecticides such as ivermectin, which targets glutamate-gated chloride channel (GluCl) channels in the nervous system of invertebrates, have gained attention for the treatment of head lice. However, resistance to this insecticide threatens the effectiveness of head louse control programs.</p><p><strong>Results: </strong>Molecular bioinformatics sequence analysis revealed that the most common mutations were R37K and E50K with a frequency of 85.71%, followed by D93N (64.28%), M101R (35.71%), and R100Q (28.57%). These mutations are reported here for the first time. The identification of these novel mutations in head louse populations raises concerns about the potential emergence of ivermectin resistance. Further research is needed to explore the functional implications of these mutations and their impact on the effectiveness of insecticide treatments.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"18 1","pages":"115"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921528/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-025-07176-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Recently, insecticides such as ivermectin, which targets glutamate-gated chloride channel (GluCl) channels in the nervous system of invertebrates, have gained attention for the treatment of head lice. However, resistance to this insecticide threatens the effectiveness of head louse control programs.
Results: Molecular bioinformatics sequence analysis revealed that the most common mutations were R37K and E50K with a frequency of 85.71%, followed by D93N (64.28%), M101R (35.71%), and R100Q (28.57%). These mutations are reported here for the first time. The identification of these novel mutations in head louse populations raises concerns about the potential emergence of ivermectin resistance. Further research is needed to explore the functional implications of these mutations and their impact on the effectiveness of insecticide treatments.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.