{"title":"Biomechanical properties of regenerated digital flexor tendon in immature newt following complete transection.","authors":"Yu Masuda-Otsuka, Tomoka Kamiya, Daisuke Suzuki, Toshinori Hayashi, Jeonghyun Kim, Takeo Matsumoto, Eijiro Maeda","doi":"10.1177/09592989251324288","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundAdult newt (9-month-old) has become an emerging research model to study complete regeneration of injured adult tendon. If younger newts exhibit tendon regeneration similar to adult ones, they can be used as an additional experimental model, assuring a high- throughput of experiments using genetic manipulation owing to shorter period of growing.ObjectiveTo examine mechanical properties and tissue structure of tendon in immature Iberian ribbed newt following complete transection.MethodsDigital flexor tendon of the middle finger of the left hindlimb in 4- and 6-month-old Iberian ribbed newt (4mo and 6mo, respectively) was transected. Regenerated tendon was mechanically tested at 6 and 12 weeks postoperatively. Collagen fiber structure was also observed using two-photon microscopy.ResultsIn both 4mo and 6mo newts, regenerated tendon at 6 weeks exhibited significantly lower tensile strength than corresponding normal tendons and had unorganized collagen structure. At 12 weeks, Regenerated tendon in both groups had the strength comparable to normal controls. Additionally, the collagen structure seemed more organized compared to that at 6 weeks and comparable to controls. These phenomena were essentially similar to those in adult newts.Conclusion4mo and 6mo newts can also be used as experimental models of adult tendon regeneration research.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251324288"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989251324288","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundAdult newt (9-month-old) has become an emerging research model to study complete regeneration of injured adult tendon. If younger newts exhibit tendon regeneration similar to adult ones, they can be used as an additional experimental model, assuring a high- throughput of experiments using genetic manipulation owing to shorter period of growing.ObjectiveTo examine mechanical properties and tissue structure of tendon in immature Iberian ribbed newt following complete transection.MethodsDigital flexor tendon of the middle finger of the left hindlimb in 4- and 6-month-old Iberian ribbed newt (4mo and 6mo, respectively) was transected. Regenerated tendon was mechanically tested at 6 and 12 weeks postoperatively. Collagen fiber structure was also observed using two-photon microscopy.ResultsIn both 4mo and 6mo newts, regenerated tendon at 6 weeks exhibited significantly lower tensile strength than corresponding normal tendons and had unorganized collagen structure. At 12 weeks, Regenerated tendon in both groups had the strength comparable to normal controls. Additionally, the collagen structure seemed more organized compared to that at 6 weeks and comparable to controls. These phenomena were essentially similar to those in adult newts.Conclusion4mo and 6mo newts can also be used as experimental models of adult tendon regeneration research.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.