Ready to ROC? A tutorial on simulation-based power analyses for null hypothesis significance, minimum-effect, and equivalence testing for ROC curve analyses.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Behavior Research Methods Pub Date : 2025-03-18 DOI:10.3758/s13428-025-02646-x
Paul Riesthuis, Henry Otgaar, Charlotte Bücken
{"title":"Ready to ROC? A tutorial on simulation-based power analyses for null hypothesis significance, minimum-effect, and equivalence testing for ROC curve analyses.","authors":"Paul Riesthuis, Henry Otgaar, Charlotte Bücken","doi":"10.3758/s13428-025-02646-x","DOIUrl":null,"url":null,"abstract":"<p><p>The receiver operating characteristic (ROC) curve and its corresponding (partial) area under the curve (AUC) are frequently used statistical tools in psychological research to assess the discriminability of a test, method, intervention, or procedure. In this paper, we provide a tutorial on conducting simulation-based power analyses for ROC curve and (p)AUC analyses in R. We also created a Shiny app and the R package \"ROCpower\" to perform such power analyses. In our tutorial, we highlight the importance of setting the smallest effect size of interest (SESOI) for which researchers want to conduct their power analysis. The SESOI is the smallest effect that is practically or theoretically relevant for a specific field of research or study. We provide how such a SESOI can be established and how it changes hypotheses from simply establishing whether there is a statistically significant effect (i.e., null-hypothesis significance testing) to whether the effects are practically or theoretically important (i.e., minimum-effect testing) or whether the effect is too small to care about (i.e., equivalence testing). We show how power analyses for these different hypothesis tests can be conducted via a confidence interval-focused approach. This confidence interval-focused, simulation-based power analysis can be adapted to different research designs and questions and improves the reproducibility of power analyses.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 4","pages":"120"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920309/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02646-x","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The receiver operating characteristic (ROC) curve and its corresponding (partial) area under the curve (AUC) are frequently used statistical tools in psychological research to assess the discriminability of a test, method, intervention, or procedure. In this paper, we provide a tutorial on conducting simulation-based power analyses for ROC curve and (p)AUC analyses in R. We also created a Shiny app and the R package "ROCpower" to perform such power analyses. In our tutorial, we highlight the importance of setting the smallest effect size of interest (SESOI) for which researchers want to conduct their power analysis. The SESOI is the smallest effect that is practically or theoretically relevant for a specific field of research or study. We provide how such a SESOI can be established and how it changes hypotheses from simply establishing whether there is a statistically significant effect (i.e., null-hypothesis significance testing) to whether the effects are practically or theoretically important (i.e., minimum-effect testing) or whether the effect is too small to care about (i.e., equivalence testing). We show how power analyses for these different hypothesis tests can be conducted via a confidence interval-focused approach. This confidence interval-focused, simulation-based power analysis can be adapted to different research designs and questions and improves the reproducibility of power analyses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
准备好进行 ROC 分析了吗?基于模拟的功率分析教程,用于 ROC 曲线分析中的零假设显著性、最小效应和等效测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
期刊最新文献
ESM-Q: A consensus-based quality assessment tool for experience sampling method items. Sample size matters when estimating test-retest reliability of behaviour. Appropriate modeling of endogeneity in cross-lagged models: Efficacy of auxiliary and model-implied instrumental variables. What you see is not what you get: Observed scale score comparisons misestimate true group differences. Ready to ROC? A tutorial on simulation-based power analyses for null hypothesis significance, minimum-effect, and equivalence testing for ROC curve analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1