Ashley Horne, Azadeh Abravan, Isabella Fornacon-Wood, James P B O'Connor, Gareth Price, Alan McWilliam, Corinne Faivre-Finn
{"title":"Mastering CT-based radiomic research in lung cancer: a practical guide from study design to critical appraisal.","authors":"Ashley Horne, Azadeh Abravan, Isabella Fornacon-Wood, James P B O'Connor, Gareth Price, Alan McWilliam, Corinne Faivre-Finn","doi":"10.1093/bjr/tqaf051","DOIUrl":null,"url":null,"abstract":"<p><p>Radiomics is a health technology that has the potential to extract clinically meaningful biomarkers from standard of care imaging. Despite a wealth of exploratory analysis performed on scans acquired from patients with lung cancer and existing guidelines describing some of the key steps, no radiomic-based biomarker has been widely accepted. This is primarily due to limitations with methodology, data analysis and interpretation of the available studies. There is currently a lack of guidance relating to the entire radiomic workflow from study design to critical appraisal. This guide, written with early career lung cancer researchers, describes a more complete radiomic workflow. Lung cancer image analysis is the focus due to some of the unique challenges encountered such as patient movement from breathing. The guide will focus on CT imaging as these are the most common scans performed on patients with lung cancer. The aim of this article is to support the production of high-quality research that has the potential to positively impact outcome of patients with lung cancer.</p>","PeriodicalId":9306,"journal":{"name":"British Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/bjr/tqaf051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Radiomics is a health technology that has the potential to extract clinically meaningful biomarkers from standard of care imaging. Despite a wealth of exploratory analysis performed on scans acquired from patients with lung cancer and existing guidelines describing some of the key steps, no radiomic-based biomarker has been widely accepted. This is primarily due to limitations with methodology, data analysis and interpretation of the available studies. There is currently a lack of guidance relating to the entire radiomic workflow from study design to critical appraisal. This guide, written with early career lung cancer researchers, describes a more complete radiomic workflow. Lung cancer image analysis is the focus due to some of the unique challenges encountered such as patient movement from breathing. The guide will focus on CT imaging as these are the most common scans performed on patients with lung cancer. The aim of this article is to support the production of high-quality research that has the potential to positively impact outcome of patients with lung cancer.
期刊介绍:
BJR is the international research journal of the British Institute of Radiology and is the oldest scientific journal in the field of radiology and related sciences.
Dating back to 1896, BJR’s history is radiology’s history, and the journal has featured some landmark papers such as the first description of Computed Tomography "Computerized transverse axial tomography" by Godfrey Hounsfield in 1973. A valuable historical resource, the complete BJR archive has been digitized from 1896.
Quick Facts:
- 2015 Impact Factor – 1.840
- Receipt to first decision – average of 6 weeks
- Acceptance to online publication – average of 3 weeks
- ISSN: 0007-1285
- eISSN: 1748-880X
Open Access option