Prediction of Gestational Diabetes Mellitus (GDM) risk in early pregnancy based on clinical data and ultrasound information: a nomogram.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS BMC Medical Informatics and Decision Making Pub Date : 2025-03-18 DOI:10.1186/s12911-025-02962-4
Tong Zhu, Lin Tang, Man Qin, Wen-Wen Wang, Ling Chen
{"title":"Prediction of Gestational Diabetes Mellitus (GDM) risk in early pregnancy based on clinical data and ultrasound information: a nomogram.","authors":"Tong Zhu, Lin Tang, Man Qin, Wen-Wen Wang, Ling Chen","doi":"10.1186/s12911-025-02962-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gestational diabetes mellitus (GDM) is one of the most common complications during pregnancy and has been on a continuous increase in recent years. This study aimed to establish a combined prediction model for the risk of GDM and to provide more reliable reference information for non-invasive assessment of GDM in clinical practice.</p><p><strong>Methods: </strong>This study retrospectively collected clinical data and ultrasound information of 122 pregnant women who underwent fetal nuchal translucency screening, which divided into 36 cases of the GDM group and 86 cases of the non-gestational diabetes mellitus(NGDM) group. The collected clinical data and ultrasound information were analyzed using Student's t-test and Wilcoxon W test for univariate analysis. Independent risk factors for patients with GDM were screened through binary logistic regression analysis. A model was established based on the screened results, and the diagnostic performance of different models was evaluated by drawing the receiver operating characteristic curve(ROC). The optimal prediction model was selected, and the calibration curve and clinical decision curve were drawn to evaluate the goodness of fit and clinical application efficiency of the model.</p><p><strong>Results: </strong>Univariate results showed that age, body mass index(BMI), number of abortions, gravidity, placental volume(PV), vascularization index(VI), flow index(FI), and vascularization flow index(VFI) all had statistically significant differences between the GDM and NGDM groups(p < 0.05). Binary logistic regression analysis showed that BMI, number of abortions, PV, VI, and FI were independent risk factors for the development of GDM in pregnant women (p < 0.05). Based on these results, five prediction models were established in this study. Their area under the ROC curve(AUC) were 0.67, 0.80, 0.80, 0.87, and 0.85, respectively. The model combining clinical data with 30° ultrasound data had the highest AUC, so we constructed a nomogram for this model. The results of its calibration curve showed that the model had a good fit, and the results of the clinical decision curve showed that the model had good clinical application efficiency.</p><p><strong>Conclusion: </strong>The nomogram model combining clinical data with 30° ultrasound data has good accuracy and clinical application value for predicting the risk of GDM.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"138"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02962-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gestational diabetes mellitus (GDM) is one of the most common complications during pregnancy and has been on a continuous increase in recent years. This study aimed to establish a combined prediction model for the risk of GDM and to provide more reliable reference information for non-invasive assessment of GDM in clinical practice.

Methods: This study retrospectively collected clinical data and ultrasound information of 122 pregnant women who underwent fetal nuchal translucency screening, which divided into 36 cases of the GDM group and 86 cases of the non-gestational diabetes mellitus(NGDM) group. The collected clinical data and ultrasound information were analyzed using Student's t-test and Wilcoxon W test for univariate analysis. Independent risk factors for patients with GDM were screened through binary logistic regression analysis. A model was established based on the screened results, and the diagnostic performance of different models was evaluated by drawing the receiver operating characteristic curve(ROC). The optimal prediction model was selected, and the calibration curve and clinical decision curve were drawn to evaluate the goodness of fit and clinical application efficiency of the model.

Results: Univariate results showed that age, body mass index(BMI), number of abortions, gravidity, placental volume(PV), vascularization index(VI), flow index(FI), and vascularization flow index(VFI) all had statistically significant differences between the GDM and NGDM groups(p < 0.05). Binary logistic regression analysis showed that BMI, number of abortions, PV, VI, and FI were independent risk factors for the development of GDM in pregnant women (p < 0.05). Based on these results, five prediction models were established in this study. Their area under the ROC curve(AUC) were 0.67, 0.80, 0.80, 0.87, and 0.85, respectively. The model combining clinical data with 30° ultrasound data had the highest AUC, so we constructed a nomogram for this model. The results of its calibration curve showed that the model had a good fit, and the results of the clinical decision curve showed that the model had good clinical application efficiency.

Conclusion: The nomogram model combining clinical data with 30° ultrasound data has good accuracy and clinical application value for predicting the risk of GDM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
期刊最新文献
A novel method for subgroup discovery in precision medicine based on topological data analysis. Evaluation and validation of a clinical decision support system for dose optimisation in hospitalized patients with (morbid) obesity - a retrospective, observational study. A study on large-scale disease causality discovery from biomedical literature. Prediction of Gestational Diabetes Mellitus (GDM) risk in early pregnancy based on clinical data and ultrasound information: a nomogram. Real-world insights of patient voices with age-related macular degeneration in the Republic of Korea and Taiwan: an AI-based Digital Listening study by Semantic-Natural Language Processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1